TABLE OF CONTENTS

PART I – DISCUSSION OF THE PEDAGOGY

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>INTRODUCTION</td>
<td>8</td>
</tr>
<tr>
<td>I-2</td>
<td>GENERAL PEDAGOGY OF PHYSLETS</td>
<td>7</td>
</tr>
<tr>
<td>I-3</td>
<td>USING PHYSLET PHYSICS IN THE CLASSROOM</td>
<td>17</td>
</tr>
<tr>
<td>I-4</td>
<td>TECHNICAL CONSIDERATIONS</td>
<td>27</td>
</tr>
<tr>
<td>I-5</td>
<td>MECHANICS</td>
<td>30</td>
</tr>
<tr>
<td>I-6</td>
<td>FLUIDS</td>
<td>38</td>
</tr>
<tr>
<td>I-7</td>
<td>OSCILLATIONS AND WAVES</td>
<td>40</td>
</tr>
<tr>
<td>I-8</td>
<td>THERMODYNAMICS</td>
<td>45</td>
</tr>
<tr>
<td>I-9</td>
<td>ELECTROMAGNETISM</td>
<td>49</td>
</tr>
<tr>
<td>I-11</td>
<td>OPTICS</td>
<td>54</td>
</tr>
</tbody>
</table>

PART II - DISCUSSION OF ILLUSTRATIONS AND SOLUTIONS TO PROBLEMS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.1</td>
<td>INTRODUCTION</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Illustrations</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Explorations</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>63</td>
</tr>
<tr>
<td>II.2</td>
<td>ONE-DIMENSIONAL KINEMATICS</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Illustrations</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Explorations</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>65</td>
</tr>
<tr>
<td>II.3</td>
<td>TWO-DIMENSIONAL KINEMATICS</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Illustrations</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Explorations</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>74</td>
</tr>
<tr>
<td>II.4</td>
<td>NEWTON’S LAWS</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Illustrations</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Explorations</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>79</td>
</tr>
<tr>
<td>II.5</td>
<td>NEWTON’S LAWS 2</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Illustrations</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Explorations</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>84</td>
</tr>
<tr>
<td>II.6</td>
<td>WORK</td>
<td>87</td>
</tr>
<tr>
<td>Illustrations</td>
<td>Explorations</td>
<td>Problems</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>87</td>
<td>87</td>
<td>88</td>
</tr>
<tr>
<td>CHAPTER II.7: ENERGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Explorations</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>CHAPTER II.8: MOMENTUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Explorations</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>CHAPTER II.9: REFERENCE FRAMES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Explorations</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>CHAPTER II.10: ROTATIONS ABOUT A FIXED AXIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Explorations</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>CHAPTER II.11: GENERAL ROTATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Explorations</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>CHAPTER II.12: GRAVITATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Explorations</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>CHAPTER II.13: STATICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Explorations</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>CHAPTER II.14: STATIC FLUIDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Explorations</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>CHAPTER II.15: FLUIDS IN MOTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Explorations</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>CHAPTER II.16: PERIODIC MOTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Explorations</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>CHAPTER II.17: WAVES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Explorations</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Illustrations</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>II.30</td>
<td>DC Circuits</td>
<td>202</td>
</tr>
<tr>
<td>II.31</td>
<td>AC Circuits</td>
<td>209</td>
</tr>
<tr>
<td>II.32</td>
<td>EM Waves</td>
<td>217</td>
</tr>
<tr>
<td>II.33</td>
<td>Mirrors</td>
<td>219</td>
</tr>
<tr>
<td>II.34</td>
<td>Refraction</td>
<td>221</td>
</tr>
<tr>
<td>II.35</td>
<td>Lenses</td>
<td>224</td>
</tr>
<tr>
<td>II.36</td>
<td>Applications</td>
<td>227</td>
</tr>
<tr>
<td>II.37</td>
<td>Interference</td>
<td>229</td>
</tr>
<tr>
<td>II.38</td>
<td>Diffraction</td>
<td>232</td>
</tr>
<tr>
<td>II.39</td>
<td>Polarization</td>
<td>234</td>
</tr>
<tr>
<td>II.40</td>
<td>Optics Appendix</td>
<td>237</td>
</tr>
</tbody>
</table>
Acknowledgements

Many people have had a hand in this project. We are grateful to them for the insights and motivations they have brought us. A complete acknowledgement of those involved in the Physlet Physics book is found in the preface to that book. Here, we would like to give additional acknowledgement to those who participated in the development of the instructors’ guide.

We are thankful to Davidson College students Peter Campbell, Todor Penev, and Laura Cupples for their assistance in working out and checking solutions and to Aaron Titus for contributing the suggested Exploration use for Chapter 13. This manuscript was reviewed by Mario Belloni and Wolfgang Christian. They gave us valuable feedback that has improved this guide as well as much support and encouragement.

Finally, this work was supported by the National Science Foundation under contracts DUE-9752365 and DUE-0126439.
Part I

Discussion of the Pedagogy
Chapter I-1: Introduction

By now it is hard to imagine an instructor who has not heard the call to “teach with technology,” as it has resounded through educational institutions and government agencies alike over the past several years. However, teaching with technology has often resulted in use of technology for technology’s sake and the development of tools that are not pedagogically sound. For example, PowerPoint lectures, a popular response to the teach with technology push, are more colorful, but generally no more interactive than chalkboard lectures. The physics community has, to its credit, worked to use technology in a variety of highly effective ways including wireless classroom response systems that allow for in class quizzing of students and MBLs (micro computer based laboratories) that free students from the drudgery of data collection so that they can spend more time understanding the underlying physical concepts. Into this, we offer Physlet Physics, a collection of ready to run interactive computer simulations designed with a sound use of pedagogy in mind. Our aim is to provide a resource that will use technology in teaching in a way that enhances student learning and interactive engagement with physical concepts which is, at the same time, flexible enough to be adapted to a variety of pedagogical strategies and local environments.

Illustrations, Explorations and Problems

Physlet Physics provides instructors with a collection of exercises spanning the introductory physics sequence. These exercises are computer animations (Java applets) with physics content: Physlets = Physics content simulated in Java applets. Every chapter of Physlet Physics contains three quite different Physlet exercises: Illustrations, Explorations and Problems.

Illustrations are designed to demonstrate physical concepts. Students need to interact with the Physlet, but the answers to the questions posed in the Illustration are given or are easily determined from interacting with it. Many Illustrations provide examples of physics applications. Other Illustrations are designed to introduce and illustrate a particular concept or analytical tool. Typical uses of Illustrations would include “reading” assignments prior to class and classroom demonstrations. For example, consider Illustration 13.2 from the chapter on statics as shown in Figure I.1.1. The text of this Illustration asks students to observe the position of the center of mass as they move a block. This Illustration also explains how to calculate the center of mass and discusses the difference between center of mass and center of gravity.
Instructors Guide for *Physlet® Physics*
Anne J. Cox and Melissa H. Dancy

Figure I.1.1: Demonstrating the position of the center of mass between two blocks of unequal mass in Illustration 13.2.

Explorations, meanwhile, are more tutorial in nature. They provide some hints or suggest problem-solving strategies to students in working problems or understanding concepts. Some Explorations ask students to make a prediction and then check their predictions, explaining any differences between predictions and observations. Other Explorations ask students to change parameters and observe the effect, asking students to develop, for themselves, certain physics relationships (equations). Typical uses of Explorations would be in group problem solving and homework or pre-laboratory assignments. Explorations are also often useful as Just-in-Time Teaching exercises (see chapter I.3). Consider Exploration 13.2 (Figure I.1.2). This Exploration asks students to apply what they learned about center of mass in Illustration 13.2 in order to explain how to build a mobile. In the first part (Figure I.1.2a), students must use the position of the center of mass (must be located somewhere below the support string) to determine the mass of the unknown block (green block). Students will continue to use conditions for static equilibrium to determine the masses of the orange and red blocks (Figure I.1.2b). As they work through this Exploration, they can verify their calculations because the position of the center of mass must remain beneath the support string from the ceiling.

Problems are the kinds of exercises you might assign for homework. They require the students to demonstrate their understanding without as much guidance as is given in the Explorations. They are on many different levels (high school physics to calculus-based university physics). Some Problems ask conceptual questions, while others require detailed calculations. Typical uses for the Problems would be for homework assignments, in-class concept questions, and group problem solving sessions. From the same chapter as the examples above, consider Problem 13.12 (in Figure I.1.3). Here students can use what they have learned by seeing how the position of the center of mass...
changes as a mass gets moved in Illustration 13.2 and completing Exploration 13.1 which forced them to check their center of mass calculations to solve the problem.

Problem 13.2:

Four spheres are shown in the image. A blue sphere is half as massive as a red one and a purple sphere is twice as massive as a red one. Where should the purple one be placed in order for the center of gravity to be at the location of the black dot (position is given in meters)?

Figure I.1.3: Center of mass calculation required for Problem 13.12.

Resources for Physlet Physics

Part I of this instructor guide provides a general overview and the pedagogy behind Physlet Physics. Specifically, Chapter I.2 describes pedagogical advantages we have found using Physlet based exercises over the years and then Chapter I.3 describes how Physlet Physics exercises can be used with a variety of specific pedagogical strategies that have evolved from physics education research on how students learn. And Chapter I.4 provides some technical information on computer requirements for use.

After this overview, Chapters I-5 through I-11 discuss the specific content of Physlet Physics, providing brief highlights and examples from each section in the form of “Section Highlights”. These “Section Highlights” should give you a flavor of the variety of exercises included and a sense of how they might be used in the classroom. Since Physlet Physics was not written to accompany a specific textbook, each section highlight also describes what material is (and is not) covered in that particular section.

Part II is an answer key for the book. It provides answers for all the Problems and complete solutions for selected Problems. It also gives some specific suggestions for classroom use of the Illustrations. In the answer key, we also indicate the topic(s) covered in each Illustration, Exploration and Problem. Additionally, each Problem has an indication if calculus is required (i.e., not appropriate for algebra-based physics) and a difficulty level indicator (1-3):

- Level 1: Straight forward, one-step problems
- Level 2: Problems requiring more than one step
- Level 3: Multi-step problems that all but the best students would likely need help to answer.

Of course, the level assignment should only be used as a guide as not all Problems clearly fall into one of the designated levels.
Finally, Part III is a collection of worksheets to accompany the Explorations. Since the Explorations are more tutorial in nature, we have developed ready-to-use worksheets for students (both as pdf files and Word documents for local modification). The worksheets are designed to provide structure to the tutorial nature of Explorations. At times, they provide additional guidance to students in solving the questions asked in the Explorations. All worksheets are designed to help students organize and clearly explain their solutions. They can be modified locally and distributed to classes of students as they work independently or in groups on particular problems. A collection of completed worksheets serve as the solutions manual for the Explorations.

Classroom Environments
“All teaching is local.” -- Unknown

Adoption and adaptation of all curricular materials is, of course, dependent on the local environment and many instructors may be hesitant to use Physlet Physics in classrooms that do not have a computer for every student. This need not be the case. The exercises in Physlet Physics are designed to be flexible enough for a one-computer-one-classroom situation to a computer-rich environment where every student has access to a computer during the entire class. As an example, consider the following Problem (Problem 22.8) shown in Figure I.1.4. In this Problem, the student can change the initial velocity (x and y components) of the pink test charge as well as the charge of the central blue charge. Students are asked to determine initial conditions so that the pink charge will land in the gray “Finish” box.

A positive test charge of 1×10^{-5} C with a mass of 0.9 kg is shown near a variable charge with a fixed position. You can change the charge of the central charge and the initial velocity of the positive charge. Set the charge of the central charge to -20×10^{-5} C:

a. What initial velocity must you give the test charge so that the test charge can make it from its starting place to the finish line in a circular path?

b. For an arbitrary negative central charge, Q, what initial velocity must you give the test charge so that the test charge can make it from its starting place to the finish line in a circular path? Your answer should be a formula for v in terms of Q.

When you have an answer test it with $Q = -10 \times 10^{-5}$ C and $Q = -30 \times 10^{-5}$ C.

Figure I.1.4: Connecting circular motion with Coulomb’s law in Problem 22.8

In a one-computer (with a data projector) classroom, the instructor can run the animation with some initial conditions that will not solve the problem. Then, the instructor can work with the class to solve the problem, testing suggestions made by the students. With a few computers around the classroom, an instructor can show this problem to students and then ask that they move to a computer to test it when they think they have a correct solution. In the computer-rich environment, students can try to game it (by simply trying different initial conditions), but it is unlikely that they will develop the correct
mathematical relationship from such an inefficient approach. In all cases, the same problem can be used a classroom with very different computer resources.
Chapter I-2: General Pedagogy of Physlets

During the years the vast collection of Physlet Illustrations, Explorations, and Problems were developed, we have used them in our classrooms and have continually sought to understand the value they might have. We have viewed countless student solutions, talked to students informally in office hours, carefully considered comments on end of semester evaluations and surveys, and even conducted problem-solving interviews with students. In the end, it has become clear that Physlet-based materials, by their very nature, offer many advantages over their traditional paper-based counterparts.

In this chapter we list and discuss the most significant aspects of Physlets that we believe makes them a valuable component of any physics course. Throughout, we have included comments from introductory physics students at Davidson College. These comments were made in writing by students on either their end-of-semester evaluation (which did not specifically ask about Physlets) or in response to a survey (specifically addressing Physlets) that was given in the introductory courses over a three-year period.

Physlet-based materials help students to visualize abstract concepts.

“Physlets do help me visualize problems at hand and are quite a bit more interesting than the text.” – Student Comment

“The (Physlet) problems show one what actually occurs and just doesn’t force one to guess what may be happening.” – Student Comment

When we ask students what they think of Physlets, or review end-of-semester evaluations, what is striking is how often they mention that Physlets help them to visualize situations. This appears to be the most obvious benefit to students. If nature is only presented to a student through words (verbal or written) and static pictures, the student is left to construct an understanding through internal visualization. While the ability to internally visualize is important, students are called upon to do it quite often in a typical physics course. Any weakness they have in their ability to internally visualize will seriously hamper their progress toward understanding the concepts of physics.

In introductory physics, motion is often a central concept. In this case, Physlet exercises will obviously help students to better visualize a situation. A verbal or written description of motion can not possibly convey a concept involving motion as effectively as a description that actually contains the motion. We have included a large number of Physlets that specifically ask students to connect their visualization of motion with other representations of motion.

Increased visualization is also going to be a key benefit when a concept involves either abstract ideas (such as electric and magnetic fields) or phenomena that take place on a scale that is not readily observed in our everyday lives. As an example, consider Illustration 18.4 shown in Figure I.2.1.
The screenshot shown in Figure I.2.1 does even come close to doing this Illustration justice. If you were viewing this Illustration you would see the sound source (black dot) moving toward the red dot. As the sound source moves it emits sound waves (represented by the black circles) that are symmetrical around the location of the sound source at the instant produced. Upon viewing this Illustration it is obvious why the waves appear closer together when the sound source of moving toward the observer and why they would be farther apart if the source were moving away. A student may believe the Doppler effect after hearing the effect of a buzzer being swung on a string in front of the class, and he/she may be able to solve problems using the Doppler effect after working through the mathematics, but neither of these insures that the student understands why there is a Doppler effect. The Physlet-based exercise can help the student to understand why by helping him or her to visualize the situation.

Notice that the student viewing the animation of the Doppler effect will also see that the effect varies depending on the location of the observer. This point is usually glossed over in a typical introductory course because the mathematics of observers not in line with the motion is more difficult. Because of their visual nature, it is not unusual for Physlet-based exercises to expose students to concepts that are too difficult or abstract to cover with only words, static pictures and mathematical equations.

Physlet-based materials discourage novice-problem solving approaches.

“[The Physlets] are a lot harder because the data often times does not seem to lend to a possible formula with a solution.” – Student Comment

Introductory level students will often use a plug-n-chug approach of problem solving when presented with a typical end-of-the-chapter textbook problem. The student is likely to start the problem by identifying the known and desired variables and then search through a list of equations, shopping for one that has the letters corresponding to the identified variables. Once they find one, they plug in the knowns, solve for the desired variable, box it in, and then move on to the next problem. Missing from the student’s

1 The propensity of students to employ a plug-n-chug approach to problem solving has been extensively documented in the research literature. An excellent introduction to this topic is included in Maloney, D. P. (1994). Research on Problem Solving: Physics in Gabel, D. (Ed) Handbook of Research on Science Teaching and Learning, The National Science Teachers Association.
solution process are the most important aspects of true problem solving: Defining the problem by identifying relevant concepts and principles, relating conceptual ideas to the mathematics, and evaluating the reasonableness of the final answer.

It has been documented\(^2\) that students can solve a large number of traditional physics problems successfully without gaining significant understanding of the underlying physics principles and concepts. Since students are not forced to conceptualize the problem when solving a traditional problem, it is unreasonable to expect significant gains in true understanding through this type of problem solving activity.

It is often the case with Physlet-based problems that the novice approach of plug-n-chug is impossible to implement. For example, consider Problem 23.6 and a similar traditional problem shown in Figure I.2.2.

The traditional problem identifies the important quantities for the student. In doing so, it gives the student a list of variables that can be plugged into a matching formula. Even though this is a somewhat difficult problem since it requires multiple steps (finding the acceleration, then finding the force, and finally the field), a plug-n-chug approach will still be effective. In the Physlet version of the question, no numbers or variables are explicitly given. In addition, the problem is actually overstated. The amount of “data” that could be collected from the Physlet is almost unlimited. This requires that students do at least some conceptualization before beginning the algebraic manipulation. They must determine what is important and how the important information can be extracted from the Physlet. Only then can they proceed to solve the problem. As one of our students put it when asked about the difficulty of Physlet problems, “Theoretically they should not be more difficult, but they tend to take more thinking and are not as simple as just taking a couple of set numbers.”

Physlet-based problems are more like problems in the real world.

“[The Physlets] help to see a practical use of physics and they do mock real life situations.” – Student Comment

“The [Physlets] are left up to interpretation. Because of this, the data collected may not be exactly like the actual data therefore making what the student calculates or observes wrong.” – Student Comment

Real problems are very different from textbook problems. Real problems do not have all the necessary information clearly highlighted. The solving of a real problem will entail sorting through lots of irrelevant, and sometimes misleading, information. And finally, real solutions often involve measurement, and measurement means uncertainty. As discussed in the previous section on the reduction of novice problem solving approaches, Physlet-based problems naturally provide too much information while also leaving the student to determine what information is important to answer the question. But Physlet-based problems can also bring an experimental and uncertain aspect to problem solving.

Consider the second student quote given in the introduction to this section. This student appears to view being “left up to interpretation” as a negative and that there is “actual data” which can make “what the student calculates or observes wrong”. This is a very interesting outlook and one which is likely shared by many others. After a lifetime of solving problems with prefabricated data leading to a precise answer, it is not surprising that students do not appreciate, or respond positively to, situations in which data must be interpreted. Because of their nature, Physlets offer a wonderful opportunity to expose students, on a routine basis, to ideas of data acquisition and interpretation that are typically only dealt with in the laboratory.

Physlet-based material can improve assessment of student understanding.

“The material in interactive problems tends to be more challenging, however because they can be seen it is slightly easier to do. Being able to actually see the problem is beneficial.” – Student Comment

Sometimes when teachers give students a task to be completed we do so mainly because we believe completing the task is valuable for the student’s learning. Such is typically the case with questions and problems assigned for homework. In other circumstances, such as exams, our goal is to assess how well our students have mastered a particular topic. We have found evidence that Physlet-based questions can be superior to traditional paper-based questions when the goal is to gauge true student understanding.

Dancy3 investigated this issue by comparing student responses to traditional conceptually-based questions with responses to nearly identical Physlet-based questions.

She found that the distribution of responses was statistically different on one third of the questions and that the incidences where the Physlet version increased performance were equal to the number of incidences where performance was higher on the traditional question. In other words, the Physlet version often affected the way students answered a question but the Physlet version did not necessarily improve or decrease performance.

These results, along with an analysis of individual think-aloud interviews with students answering different forms of the questions, led Dancy to assert that in general, the Physlet version of the question was more valid. In other words, when the Physlet version decreased performance it was because it shifted students without a true understanding from the correct answer to an incorrect answer. For example, on one question students tended to have memorized the answer and gave this memorized answer when seeing the paper version of the question but gave the answer they really believed when seeing the Physlet version. Likewise when the Physlet version increased performance it could often be connected to students misunderstanding or misinterpreting what was written. When they saw the Physlet version, they had a better sense of what the question was asking and were therefore better able to express their understanding.

Finally, Dancy found that while performance on the traditional questions was statistically correlated with the students’ English ACT score, no such correlation was found with the Physlet version of the questions (correlations were found with math ACT score for both versions of the questions). This finding, that verbal ability appears to play a larger role in the traditional paper-based assessment, is consistent with the finding that the Physlet-based question tended to be clearer to the student. While reading ability is important, it is also important to get a clear assessment of a student’s physics understanding independent of his/her ability to read. It appears that Physlet-based questions are generally superior at doing this.

Physlet-based exercises are interactive.

“Use of Physlets on the computer is good for experimenting and observing.” – Student Comment

It has been shown that interactive techniques are superior at helping students develop a deep understanding of physical phenomena. A number of successful techniques have been developed to bring interactivity into the physics classroom. Although Physlets by themselves could never substitute for true interactive teaching, they are well suited for most interactive teaching methods. In Chapter I.3, we discuss several of these methods in detail. Here we will only illuminate the reasons why Physlet-based materials are so well suited for interactive teaching.

It is often beneficial for students to predict an outcome before observing a situation. If their prediction is incorrect then they can work to resolve the discrepancy. This model of learning is beneficial for students as it forces them to confront their misunderstandings.

rather than just add pieces of knowledge without integrating that knowledge with what they already know and think they understand. Basically, if students are not lead to explicitly confront their misunderstandings, they often don’t. In *Physlet Physics*, especially in the Explorations, we often ask students to make a prediction and then interact with the Physlet to test their predictions. For example, consider Exploration 23.2 shown in Figure I.2.3. In this Exploration the student is presented with a situation involving the electric field due to two charges and asked to predict the path a positive test charge will follow if released. Many students will believe that the charge will follow the electric field lines exactly. Once they have made their prediction they can then play the animation and see that the path is not identical to the field lines. Hopefully the students will then confront their ideas and begin to understand why lines of force do not indicate path. There are several more parts to this question (not shown in the figure) that present students with a similar situation and ask them to make new predictions. These additional parts allow the students to try out their revised ideas. This particular Exploration also makes a good Peer Instruction question, which is discussed in Chapter I.3.

The animation shows two fixed charges and a test charge (position is given in meters and time is given in seconds). The electric field lines due to the fixed charges and the force vector on the test charge are shown. The test charge will move under the action of the electric field when the animation is played.

Using Configuration A, drag the test charge to the approximate position of (-0.8 m, 0 m). Write down a prediction for the path the charge will follow after being released at this point. After you have made your prediction, play the animation. Was your prediction correct? If not, what caused your error?

Figure I.2.3: Excerpt from Exploration 23.2 showing an interactive exercise.

The previous example was highly structured. However, it can also be beneficial to let the student “play” with a given system to try out his or her ideas and to develop an intuitive understanding. Physlet-based exercises can give real-time feedback to students as they manipulate the parameters of a situation. As an example consider Illustration 37.1 shown in Figure I.2.4.

Figure I.2.4: Excerpt from Illustration 37.1 showing a virtual ripple tank.

- What happens if the distance between the sources is increased or decreased?
- What happens if the phase between the sources is changed?
- What happens if the wavelength of the emitted waves is increased or decreased?
- What happens if more sources are added?
Illustration 37.1 provides students with a virtual ripple tank. The student can add wave sources, controlling the wavelength, position, amplitude and phase of each new source. There are some guiding questions, shown in the figure, included with the Illustration. However, the students are also free to try things beyond the directions given. Because of the flexibility of this particular Illustration there are a number of ideas students could explore.

Two aspects of interactive learning that make it so valuable for the development of genuine understanding are the ability to “probe” a given situation and the feedback that is received. The interactive, dynamic nature of Physlet-based material makes it ideally suited for the development of conceptual understanding.

Physlet-based materials often use multiple representations.

“*In addition to class demonstrations, the Physlets help bring to life sterile mathematical equations.*” – Student Comment

“*As individuals learn in different ways, little harm is done by presenting a different perspective on a given problem.*” – Student Comment

The idea that students learn best when they see the same ideas presented in different ways is not new. But traditional physics instruction often falls well short of achieving this goal with a heavy reliance on the written and spoken word. Perhaps a few static diagrams are introduced, but by and large the students are exposed to the often complex ideas of physics in a few narrow modes. Physlet-based material can not only bring motion to the arena, which greatly helps students visualize ideas, but they can also provide simultaneous representations within a single Physlet. For example, consider Illustration 3.4 shown in Figure I.2.5.

A purple ball undergoes projectile motion as shown in the animation. The blue and red objects illustrate the x and y components of the ball's motion. Ghost images are placed on the screen every second. The velocity vector is shown in purple and the acceleration vector is shown in orange.

Figure I.2.5: Excerpt from Illustration 3.4 showing multiple representations.

A large number of representations are built into this Illustration. First of all, students can actually view the motion of the projectile (the purple ball). At the same time, they can watch the motion in just the x or y directions by focusing on the red and blue balls. As the balls move they leave ghost images, which give a lasting visual reference of the ball’s path and velocity, since the ghost images are left in set time intervals. In addition the
motion is plotted graphically, which can help students to connect their ideas about motion to their ideas about graphs. Finally, yet another representation is given, the velocity and acceleration vectors.

This particular Illustration is particularly rich in its provision of multiple representations but this theme has been integrated through the Physlet Physics book. You will find that the features in the above problem, such as showing real-time graphs and vectors, as well as many other forms of representation are massively incorporated into the Illustrations, Explorations and problems of the book.

Physlets are simple, focusing on substance rather than coolness.

Too often educational technologies are developed based on the technology, and pedagogy comes as an afterthought. We did not use this model in developing the curricular material found in Physlet Physics. Our model was to come up with an idea, based on what we thought students needed to understand, and then make that idea fit into the Physlet paradigm. The curriculum development drove the technical development as new features were added to the Physlet code to meet pedagogical goals. The result is a curricular package that is not designed to entertain and is more impressive to teachers and their students than to computer programmers.

Physlets are also very simple. Only the important aspects of a situation are included. There are not distracting graphics, animations, or sounds. This allows students to attend to the substance of the Physlet without being distracted by unnecessary or overly flashy additions.

Physlets can model non-physical situations.

Because the Physlets are not constrained to correct physics, some of the exercises included in Physlet Physics ask students to identify non-physical animations and explain what is wrong with them. This forces students to realize that Physlets are simply a simulation, not the “real world,” and physics involves describing real observations. It also provides a different way to probe student conceptual understanding. In order to solve such problems, students must be able to describe what should happen not only mathematically, as is required for most traditional problems, but in terms of a dynamic simulation. For example, Problem 22.2 shown in Figure I.2.6 asks students to determine if anything is wrong with the animation. The student must drag the charges around to determine the force each exerts on the other. This animation does not follow the notion that there are only two kinds of charge and that like charges repel while unlike charges attract. A different kind of thinking is required to answer these questions and Physlets are well suited to probe students in this manner.
Four charged objects are shown on the screen along with vectors representing the forces on each object. You can click-drag on any object to change its position (position is given in meters).

What, if anything, is wrong with the animation?

Figure I.2.6: Problem 22.2 showing a nonphysical situation.

Physlet-based materials are cheaper and easier to maintain than laboratory equipment and are not restricted to in class use.

“The Physlets in general are very helpful because they demonstrate concepts without taking the time of an actual demo.” – Student Comment

Physlet Physics is much cheaper than laboratory equipment and will not need repairing. This allows for more opportunity for students to be engaged in laboratory type activities where students can quickly change parameters and see the outcome. Even more important, students can work through a Physlet activity without being supervised. Students do no have to be in a particular location or working at a particular time in order to benefit from the Physlet activities. They only need a working computer.

As an example consider Problem 7.6 shown in Figure I.2.7. The problem is very similar to a typical laboratory experiment. We often have students answer these types of problems before coming to lab as a pre-lab exercise to prepare them for the laboratory. We discuss these types of questions further in Chapter I.3.
A 2.5-kg cart on a low-friction track is connected to a string and then to a 0.5-kg hanging mass as shown in the animation. Neglect any effects of the massless pulley on the motion of the system (position is given in meters and time is given in seconds).

During the animation:

What is the total work done by the tension on the two-object system?

Figure I.2.7: Excerpt from Problem 7.6 showing a typical laboratory based situation.

Physlets are scriptable.

Many teachers using *Physlet Physics* will find a problem that they somewhat like but would prefer a slight modification. It is actually easy to modify an existing problem. If you look at the source code for a web page with a Physlet in it, you will see that there is some JavaScript near the top. The JavaScript is what tells the underlying Physlet what objects to create and how to make them interact. By changing the JavaScript you can modify the problem. If you are interested in learning how to script Physlets, the book *Physlets: Teaching Physics with Interactive Curricular Material* is your guide.

We have made a conscious effort to develop the materials in *Physlet Physics* around a sound pedagogical base. As we have outlined in this chapter we have been successful at implementing many of our intentional goals and have been pleasantly surprised to find a number of unexpected pedagogical advantages emerge with classroom use. We believe the curricular material offers many advantages to the physics student and is an effective merging of technology and pedagogy.
Chapter I-3: Using *Physlet Physics* in the Classroom

The material in *Physlet Physics* is designed to be used with most teaching styles and at most levels of introductory physics. We recognize that the style and preferences of individual instructors, as well as the vastly different student population, call for various teaching approaches. We believe the material in *Physlet Physics* will complement almost any teaching style. If you prefer a traditional lecture-based approach you will find that the Illustrations bring a visual and dynamic nature to the lecture presentation. If you teach in a more interactive classroom, you will find that many of the Explorations and Problems bring out conceptual difficulties that will lead to interesting group discussions. Many of the questions also make excellent Just-in-Time Teaching or Peer Instruction questions as is discussed below.

We have also attempted to include material that would be appropriate for conceptual high school physics to advanced calculus-based university students. You should be able to find ample material that meets the needs of your particular students. Questions that require calculus are marked in the solutions section of this instructor’s manual.

Over the years that we have been using Physlet-based material in the classroom, we have discovered that it is essential to **orient students to the technology**. Chapter 1 in the *Physlet Physics* book provides some Physlet-based material for this orientation. If you do not orient students in some fashion it is likely that your students will become exceptionally frustrated. This orientation should include,

- **How to use the mouse to get position measurements from the screen.** Point out to students that mouse coordinates are usually shown in the lower right-hand corner of the applet. It is also helpful to point out that it is wise to pick an easy to locate spot on an extended object to make consistent measurements over time.

- **How to initialize the applet.** Many of the applets do not run automatically when the page is loaded. The student may need to click on a link that will initialize the applet. There may be several of these links in a page. Students need to know to look for them.

- **How to click-drag to move objects around.** Students may not realize that they can move objects on the screen and will just stare at the screen instead of interacting with it.

- **How to get the Physlets to run.** Although Physlets will run on most machines, there are some browser and compatibility issues as was outlined in Chapter I.1. Students need to be aware of these issues and may need help finding a computer they can run the Physlets on.

In addition to these basic issues, be mindful of issues related to particular applets. For example, in the optics bench applet, the focal point of a lens can be changed by clicking on it and then dragging on the hotspot. Students need to be made aware of this. We have tried to include this type of information in the students’ materials but students may still have trouble interacting with the applet.
As the students use more of the Physlet-based material they will become comfortable and will understand the basic features. However, in the beginning it is vital that the instructor makes sure they understand how to use the Physlet and that students are able to ask question if they are confused. We typically orient students by having them complete a very simple Physlet-based Problem that requires measurement during their first lab session. Since other students and the laboratory instructor are present, we can quickly deal with frustrations and usage issues. After the laboratory, students are required to access the Physlet from the computer they are most likely to use to complete out of class assignments and report back any technical difficulties they might have encountered.

Finally, it is important that students see Physlet-based material during class time. If an instructor assigns Physlet Problems for homework but never uses them during class and never goes over solutions, then students are unlikely to see Physlet-based materials as valuable and are likely to be frustrated by them. As we discussed in Chapter I.2, answering a Physlet-based question or solving a Physlet-based Problem is very different from anything the students are accustomed to. They must learn to think conceptually and avoid plug-n-chug approaches. This can be very difficult for students and they need to see proper approaches modeled in the classroom. Also, as with any teaching tool, the students need to believe the instructor sees the activity as useful. An instructor that never mentions the Physlet-based Problems in class will convey the attitude that such exercises are unimportant.

In the following sections we will summarize several teaching techniques that we have found to be very beneficial for learning and that complement the material in Physlet Physics. We hope you will find the ideas presented here helpful as you plan your instruction. At the end, we discuss student reactions to Physlets.

Just in Time Teaching (JiTT)

JiTT\(^5\) is an exemplary example of combining teaching with technology. It also lends itself so well to Physlets that some Physlet adopters have used the terms interchangeably. JiTT is an approach used to prepare and motivate students to learn during class. In this approach students answer a question before class and turn in their response using either e-mail or an html form. The instructor then reads the responses before class and is therefore able to tailor the class discussion around the students’ responses. In the following paragraphs we briefly discuss implementation of the JiTT approach and conclude with a discussion of why Physlets fit with this approach so well. We are only able to give a short introduction here, for more details on implementations, as well as a collection of class-tested JiTT questions, see the book referenced in the footnote.

The JiTT question should be carefully chosen, as not just any question is effective. Typically, the question deals with a topic not yet covered in class, thereby forcing students to actually read the text, and perhaps talk to each other, in preparation for class. We have found that, when giving questions based on material not yet covered in class, simple conceptual questions are the most effective at getting students to think about the

material and come to class with questions. Problems are usually not effective as students can often solve a problem by plug-n-chug and do not have to think about the underlying concepts. It is good to ask students questions which are simple but which get at the heart of difficulties the students are likely to have. This helps the students to see where their difficulties lie and will make them more alert during class as they seek to fill in the gaps of their understanding. However, you should occasionally include a question which most students are likely to answer correctly, if they read the text, in order to keep them from getting discouraged. We have found JiTT to be very effective at both encouraging students to review the text before class (which saves class time essentially reading it to them) and at priming their minds to grapple with the more challenging concepts during class (instead of postponing it to when they attempt the homework).

In the JiTT approach students submit their responses electronically before class begins. Most instructors require student answers a few hours before class time and then spend the time before class reviewing student submissions. Review of JiTT responses alerts an instructor to common misunderstandings or difficulties. Based on student responses an instructor may decide to spend more or less time on a particular topic, tailoring class-time more precisely to the needs of the students. Many instructors will also strip out the names from student submissions and then share all submissions with the class. It is helpful for students to see how others responded and provides an easy bounce into class discussion.

We have found Physlets to be a perfect match to the JiTT approach. As discussed in Chapter I.2, Physlet-based materials are excellent at forcing students to think conceptually, even when they are problem solving. Also, because of the interactive nature of Physlet-based questions they open up avenues of thought and discussion that are not typical of a static question. For example, consider Problem 4.1 shown in Figure I.3.1.

![Figure I.3.1: Problem 4.1, an excellent JiTT question.](image)
This Problem asks students to determine the correct free-body diagram for two blocks. Students must realize that there is no acceleration in order to determine that free-body diagram #2 is correct. The responses of three students who answered this as a JiTT question are given below.

Student 1: I think the free body diagram number 1 is the correct one. Number 2 does not show horizontal forces acting on the smaller block; Number 3 shows that the net force will be toward right, which means that the objects will be accelerating toward right, but the objects are moving in constant velocity, so no acceleration, no net force toward right; Number 4 again does not show horizontal forces on the smaller block, and the mg on the big block is represented too small.

Student 2: Free-body diagram 2 is correct. 1 is incorrect because the normal force is less than the combination of the forces of gravity for the red and green boxes, and because the green box has both a friction and an anti-friction vector, which is incorrect. 3 is wrong for the same reasons as 1 and because the force vector that is pushing the red box is bigger than the friction vector. If this were true, then the boxes would be accelerating. 4 is wrong because the gravity vector for the green box on the left is not the same as the gravity vector for the green box on the right.

Student 3: Free-body diagram #3 is the correct one. #1 is incorrect because the force being applied by the hand has the same magnitude as the force of friction and if this was the case the object wouldn't be moving. #2 is incorrect for the same reason as #1 and also in #2 the small block doesn't show any force being applied to the small object in the horizontal direction, and both objects have the same horizontal components. Finally #4 is incorrect because the same reason as #1 and also the vertical components of the force do not cancel each other out, and they should since the object is not moving in the vertical direction.

The students’ responses are very rich and provide the instructor with a starting point for classroom discussions. Also note that the Physlet version of this question requires that students realize, on their own, that acceleration plays an important role. If the students were simply given the four free-body diagrams and told that velocity remained constant they would have been clued in by the question statement as to what might be important. Although many would have still exhibited the “motion requires a force” model of thinking, the highlighting of the constant velocity in the question statement would have cued some in. The Physlet allows us to ask questions of students without giving them answers they would not otherwise obtain.

Pre-Laboratory Exercises

Because Physlet-based exercises often mimic laboratory situations, we have found that they make excellent pre-lab exercises. We often require students to answer a Physlet question before coming to laboratory. Using the JiTT philosophy, students submit their answers electronically before coming to class and the instructor can review submissions before the laboratory session begins. We have found the pre-lab exercises to be an excellent way of introducing students to the ideas, and sometimes even the equipment,
they will encounter in lab. This allows the students to work through the laboratory faster and with less confusion. For example, consider Problem 18.11 shown in Figure I.3.2.

Using a speaker, a standing sound wave has been set up inside a tube. A movable microphone lies inside the tube (position is given in centimeters and time is given in seconds). The graph shows the sound recorded by the microphone as a function of time. Move the microphone back and forth to study the changing amplitude of the sound it receives.

a. For what microphone position(s) does the amplitude of the sound go to zero? What is such a location called?
b. For what microphone position(s) is the amplitude of the sound a maximum? What is such a location called?
c. From the locations of the nodes, determine the wavelength of the sound waves.
d. From the graph, determine the frequency of the sound waves.
e. Using the wavelength and the frequency, find the velocity of the sound waves in the tube.

Figure I.3.2: Problem 18.11 which mimics a hands on laboratory experiment.

Problem 18.11 is very similar to a lab that is typically performed during a study of sound. In the lab, students are asked to connect a speaker to a tube and determine the velocity of sound by measuring the locations of the nodes. Problem 18.11 asks students to do the same thing, except in a virtual environment. By assigning this Problem as a pre-lab exercise, students will come to the laboratory with an understanding of the concepts and calculations relevant to the lab and can then focus their attention on data acquisition and analysis. Note that this question would also be an excellent post-lab question on an exam in order to test students on the laboratory procedures, without having to get out the equipment again.

Peer Instruction

Peer Instruction⁶ is an approach that is used to bring interactivity to traditional lectures. In this approach conceptual questions are posed to students during lecture. The students

are asked to think about the question briefly and commit to answer as the instructor polls the class. After giving an initial answer, the students then turn to their neighbors to discuss their answers. The instructor can then poll the students again and lead them into a discussion. We find Physlet-based questions to be valuable Peer Instruction questions because they are excellent at bringing out simple, conceptual difficulties. They are also useful because they can quickly help students understand the question asked.

One of the keys in Peer Instruction is for all the students to understand the question so that their discussion can be focused on the physics content (and not arguing about what the question means) and an animation clearly shows what happens. Additionally, we have found that it is simply faster to use animations to ask a question than text. Consider Problem 14.10 as shown in Figure I.3.3 in comparison with the associated ConcepTest from Mazur’s Peer Instruction book.

![Figure I.3.3: Physlet for use in Peer Instruction.](image)

The animation is color coded as follows: blue is water, red is oil, and brown is a wood block initially floating at the interface. A pump, which starts at \(t = 1 \) s, removes the oil. Which animation is physical?

<table>
<thead>
<tr>
<th>ConcepTest 11.11 (from Peer Instruction): Consider an object that floats in water but sinks in oil. When the object floats in water, half of it is submerged. If we slowly pour oil on top of the water so it completely covers the object, the object</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. moves up.</td>
</tr>
<tr>
<td>2. stays in the same place.</td>
</tr>
<tr>
<td>3. moves down.</td>
</tr>
</tbody>
</table>

Using the Physlet, students can quickly identify which of the animations (A-C) matches their prediction and the discussion that ensues can focus on the reasons that they picked a given animation.

Cooperative Group Problem Solving

We also believe many Physlet Problems are excellent for cooperative group problem solving. Heller\(^7\) et. al. have made the case that traditional end-of-chapter textbook problems are not adequate for group problem solving. After many years of teaching problem solving using cooperative learning, they have found that good group problems must be challenging enough so there is a real advantage to working in a group. They advocate using what they call context-rich problems with groups. Some of the features they advocate for group problems include: not being solvable in one step by plugging numbers into a formula, leaving the unknown variable unspecified in the problem statement, and giving more information than is required to solve the problem. All of these characteristics are typical of Physlet-based problems. Furthermore, Physlet-based problems are particularly useful for incorporating the last two features. Leaving the unknown variable unspecified, or giving more information than is necessary, in a paper-based problem statement makes the statement a bit contrived. However, both of these

functions are fulfilled naturally with a Physlet based problem. Consider Problem 11.5 as shown in Figure I.3.4 below.

Problem 11.5: A giant 2.5-kg yellow yo-yo, made of two solid green disks and a massless red hub, is shown (position is given in meters and time is given in seconds). Determine the torque that the string exerts on the yo-yo.

Figure I.3.4: Finding the torque on a yo-yo (Problem 11.5) as a group problem solving exercise.

Although this is very similar to a typical end of the chapter problem, it serves the purposes of a collaborative group problem solving exercise because the data that students need to take from the Physlet is not apparent (they need to find the acceleration, the radius of the inner red hub as well as the out green hub) and it is not well suited to plug-n-chug because it involves multiple steps (finding the acceleration, moment of inertia of the yo-yo, drawing a force diagram and finally solving for the torque). Student groups using this in a recitation session found it to be a challenging and engaging problem that they felt helped them to understand the material more clearly.

Ranking Task Exercises

A ranking task\(^8\) is an exercise that gives students a set of circumstances and asks the students to rank the circumstances based on some variable. The authors of the ranking task book referenced in the footnote four reasons for using this type of exercise: they frequently elicit students’ natural ideas rather than a memorized response, they provide a way to frame questions in a manner that is novel for almost all students, and they can help students develop a legitimate understanding of some concepts. We agree with their assessment and have subsequently developed many Physlet-based ranking tasks that are included in *Physlet Physics*. You will find ranking task exercises in almost every chapter. As an example, consider Problem 19.7 shown in Figure I.3.5.

Run the animations and rank the materials in order of their specific heat capacity from smallest to largest (temperature is given in kelvin and time is given in arbitrary units). In each animation the same mass of material starts at the same temperature and is put into a thermally insulated container of water. The graph shows the temperature of the water and the material as a function of time.

Figure I.3.5 – Problem 19.7, a ranking task exercise.

Problem 19.7 asks students to rank three materials based on their specific heat. Playing each animation shows students how the temperature varies with time for the unknown substance and the container of water. Students must use this information to determine the relative specific heats of the materials.

Interactive Lecture Demonstrations

Physlets can also be used to complement these demonstrations to provide ways to explain observations. Exploration 35.1, shown in Figure I.3.6, for example can be used in conjunction with a demonstration that asks students to predict what will happen to a real image formed by a converging lens when half of the lens is blocked. After asking students to make and then discuss predictions and then discussing the observation, students find this exercise useful to help them understand the demonstration. By recognizing that multiple rays leave a given point on the object, they are no longer surprised that a half-blocked lens still has an image.

![Image formation in Exploration 35.1 used as part of an ILD.](image)

Student Perceptions

So what do students think of Physlets? We surveyed the students at Davidson College who used Physlets in their course. These surveys were given to approximately 100 students over a period of 3 years. A summary of the survey results follows.

We asked the students to respond agree, neutral, or disagree to several statements regarding Physlet use. Note that to the students, “interactive problems” meant Physlets.

1. Interactive problems help me visualize concepts presented in class.
Interactive problems help me visualize concepts presented in class.

- Agree: 80%
- Neutral: 10%
- Disagree: 10%

2. Interactive problems are harder than textbook problems.

Interactive problems are harder than textbook problems.

- Agree: 70%
- Neutral: 20%
- Disagree: 10%

3. Interactive problems have little value and should be dropped.

Interactive problems have little value and should be dropped.

- Agree: 10%
- Neutral: 20%
- Disagree: 70%

The results of questions one and three indicate that most students find it helpful to have Physlet-based material incorporated into their course. Those students who did not fully support the Physlets were vague in their reasons. For example, “I don’t like the Physlets. They don’t seem to help me focus my studies at all, and are very time-consuming. The Physlets don’t help me understand.” Since none of the students who were unfavorable toward Physlets were able to articulate any specific reason they did not like them, it
seems likely that these students were simply unhappy or frustrated with the course as a whole.

Question two turned out to be very interesting. We believed that students would find the Physlet problems to be more difficult so it was somewhat surprising when less than half of the students agreed. In order to make sense of their opinions we needed to look carefully at the written comments they included with their rankings.

Many students stated that the Physlet problems were harder because they were given as Just-In-Time teaching problems whereas the textbook problems were assigned after the material was discussed in class. Other students noted that they were harder because the student had to think more or work to figure out what information was given. For example,

“I believe this because for the Physlets, one not only needs to figure out what to do, but what information he/she/ needs to do it with. The textbook most of the time simply gives one the information needed to solve the problem.”

Others noted that the level of difficulty depended on the particular problem and could not be generalized based on a Physlet-textbook designation alone.

Almost 20% of students felt the Physlet-based problems were actually easier. In general, it was the increased visualization that helped these students. For example,

“The material in interactive problems tends to be more challenging, however because they can be seen it is slightly easier to do. Being able to actually see the problem is beneficial.”

“Harder than some, but easier than others. It is made easier because I can see what is happening.”

In our experience, most students like the Physlet-based problems as long as they are properly oriented to using Physlets, the use Physlets often enough to become comfortable interacting with them, and the instructor is supportive. Overall, students find the Physlet-based material interesting and beneficial to their learning.
Chapter I-4: Technical Considerations

Note: The following information is also found in the preface of *Physlet Physics*.

Browser Tests and System Requirements

Browser Tests

Physlet Physics provides physics teachers with a collection of ready-to-run, interactive, computer-based curricular material spanning the entire introductory physics curriculum. All that is required is the *Physlet Physics* CD and a browser that supports Java applets and JavaScript to Java communication. This combination is available for recent versions of Microsoft Windows and most versions of Unix. Although we occasionally check Physlets using other combinations, Microsoft Windows 2000 and Windows XP with both IE and the new Open Source Mozilla browser are our reference platforms.9

To check whether your computer already has Java installed, go to the Preface Chapter on the CD and navigate to the Browser Tests and System Requirements page. There you will find two buttons.

![Figure I.4.1: The “Check for Java” and Platform Check” buttons.](image)

Click the buttons to check for Java and your computer platform. If your browser fails the Java test, please continue reading for information on getting and installing Java.

Microsoft Java

Most, but not all, versions of Windows include the Microsoft Java Virtual Machine (JVM). To test if any version of this JVM is installed on your computer, type the `jview` command at a DOS prompt. If a program runs, you have a Microsoft JVM. If you receive an error that no program by that name exists, you don’t.

The Microsoft JVM is installed and updated on your computer with Windows Update. Previously it could be downloaded separately, but now Microsoft only uses Windows Update. The main Web page from Microsoft about Java is http://www.microsoft.com/java.

Sun Microsystems Java

The Sun JVM is downloadable from the Java website: http://java.sun.com. After downloading the file to your hard drive, double-click on its icon to run the installer. Follow the instructions the installer provides.

9 Physlets have been tested on Linux and various versions of Unix. The only major operating system vendor that does not support Physlets is Apple Computer since the standard Macintosh and Power PC browsers do not support JavaScript to Java communication.
You can check your computer for a properly installed Sun JVM and change its properties by clicking on the Java plug-in icon in the Windows Control Panel.

![Control Panel](image1.png)

Figure I.4.2: The Control Panel folder showing the Java plug-in icon.

The following dialog box will appear:

![Java Plug-in Control Panel](image2.png)

Figure I.4.3: The Java plug-in dialog box is accessed from the Windows Control Panel.

Although it is possible to simultaneously install Java VMs from Microsoft and Sun Microsystems on Windows computers, a browser can only run one VM at a time. You can switch between these two JVMs in Internet Explorer. Start IE and click the Advanced tab under Tool|Internet Options from the IE menu bar. The following dialog box shown in Figure 4 will appear.
Figure I.4.4: The advanced Internet Options dialog box is accessed from within Internet Explorer.

Figure 4 shows that this computer that has two Java VMs and that it is currently configured to run the Microsoft VM. The option for the Java (Sun) VM will not appear unless the Sun Java Run-Time Environment has been installed. You will need to close all browser windows if you decide to switch VMs. You do not, however, need to restart the computer.

Non-Microsoft Browsers

Netscape, Opera, and Mozilla offer alternatives to the Microsoft Internet Explorer on Windows operating systems. You can download this browser from the Mozilla website: http://www.mozilla.org.

After downloading the file to your hard drive, double-click on its icon to run the installer. Follow the instructions the installer provides. The Mozilla browser requires that the Sun JVM be installed on your computer.
Chapter I-5: Mechanics

The mechanics chapters represent the starting point for a study of physics. The illustrations in these chapters tend to focus on introducing topics and provide an interactive alternative to the standard textbook treatment. As we discuss below, you will find these chapters to be particularly rich in multiple representations of concepts as motion graphs, energy-bar graphs, and mathematical modeling are integrated throughout.

What Is Covered?

- All mechanics topics typically covered in an introductory course are found in the mechanics chapters of Physlet Physics.
- Chapter 1 provides an introduction to Physlets and Physlet-based exercises and is designed to get students through some of the difficulties they may encounter as they embark into unfamiliar territory.
- Reference frames and relative motion are in a separate chapter, Chapter 9.
- The first Newton’s laws chapter (Chapter 4) deals with the basic concept of force, free-body diagrams and the forces of weight, tension, and normal force. The Newton’s Laws II chapter (Chapter 5) goes beyond Chapter Four to include friction (including air friction), circular motion, and springs.
- The Rotations about a Fixed Axis chapter (Chapter 10) introduces the concepts associated with rotation: angular variables, torque, angular momentum and the angular momentum of particles. General Rotations (Chapter 11) extends this to objects that rotate and translate thereby including rolling and collisions between an object in translational motion with a rotating object (e.g. mass dropped on a rotating merry-go-round).

Highlights of Mechanics Chapters

Focus on Graphical Representations of Motion

We have made extensive use of motion graphs throughout the mechanics chapters. As students view the actual motion, they also see graph being created of the motion, thereby reinforcing the connection between actual motion and a graphical representation.

Although the ability to construct and interpret graphs is an important scientific skill, there is evidence that students often have great difficulty interpreting kinematics graphs.\(^{10}\) Because Physlets can easily create a motion graph in real time with the motion, they provide an avenue for helping students to develop their understanding of motion graphs that can not be replicated through traditional means. As an example, consider Exploration 2.4 shown in Figure II.5.1.

In this Exploration, students can input initial values for the monster truck and then see the position and velocity graphed as the truck follows the motion below. The questions in the Exploration guide students into experimenting with the parameters to see the effect on the graphs. This is one of many Illustrations, Explorations, and Problems that explicitly connect the graphical representation of motion to a visual representation.

Kinesthetic Learning

A tremendous advantage of Physlet-based exercises is that they are interactive. This interactive nature has been exploited numerous times in Physlet exercises that require students to use their mouse to control the Physlet. For example, consider Problem 1.3 shown in Figure I.5.2.

![Figure I.5.2: Problem 1.3 which has students attempt to match a position, velocity or acceleration graph by dragging a monster truck.](image)
Students are shown a position, velocity or acceleration graph and asked to move the monster truck, by dragging, to replicate the graph. Students will find that it is easiest to match the position graph and will have the most difficulty with the acceleration graph. This activity is fun for the students and can help them to connect physical motion with graphical representations. Other Physlet-based exercises that require physical inputs are Exploration 3.2, Illustration 4.3, Exploration 4.3, and Exploration 7.1.

Energy Bar Graphs

When energy considerations are an integral part of a Physlet, we have often included an energy bar graph. This type of representation has been shown\(^{11}\) to be a useful tool to help students understand energy concepts and to solve problems related to work and energy. An example Physlet that utilizes energy bar graphs is shown in Figure I.5.3.

![Figure I.5.3: Illustration 7.1, a ball sliding on a wire with bar graphs representing kinetic energy, potential energy and energy lost to friction.](image)

In the Illustration shown in the figure, a ball is released on a wire and slides back and forth. The first bar (orange) represents the amount of kinetic energy of the ball, the second bar (blue) shows the amount of potential energy, and the third bar (red) shows how much energy has been lost to friction. As the ball slides back and forth, the heights of these bars change in real time to reflect the various energies. The energy bar graphs provide students with an alternative, qualitative, way of thinking about energy and changes in energy.

Visualization of Abstract Concepts: Reference Frames

Along with providing visualization of multiple representations such as plots, charts, and bar graphs associated with animations, students find the visualization of certain specific concepts in mechanics to be particularly useful. Exploration 9.3, shown in Figure I.5.4, allows students to see motion from a variety of reference frames. Comparing the motion seen from different reference frames helps students develop a stronger conceptual understanding of reference frames. This visualization helps students understand how and why reference frames are used in ways that a static or mathematical construction can not begin to provide.

Visualization of Abstract Concepts: Kepler’s Laws

Physlet Physics examples that allow students to explore Kepler’s laws, give students a laboratory that is unavailable in any other way. It is a bit difficult to design and construct a solar system, after all. As students change the velocity and initial positions of planets in Exploration 12.1 as shown in Figure I.5.5, for example, they can quickly see the change in the orbits and how Kepler's laws are applied. As students see motion described (and required) by Kepler’s laws, they are in a better position to make the connection between celestial gravity and terrestrial gravity and to understand Newton’s law of universal gravitation.

![Figure I.5.4: Exploration 9.3 compares the motion of objects viewed from three different reference frames (person on shore, boat in river, and river itself). Applet authored by Fu-Kwun Hwang, National Taiwan Normal University](image1)

![Figure I.5.5: Building a solar system in Exploration 12.1.](image2)
Visualization of Abstract Concepts: Rotational Motion

Even though the extension from linear systems to rotating systems seems logical, because of the mathematics, many students find it difficult to understand the corresponding concepts of rotational motion: angular acceleration and velocity, torque, moment of inertia, and angular momentum. The visualization provided by the exercises in *Physlet Physics* allows students to see the motion and make connections between the motion they observe and the parameters that they change. Consider for example, Exploration 10.3 as shown in Figure I.5.6. Students change the mass of the pulley, the hanging block and the size of the pulley and as they see the effects of the changes (in the motion of the falling block), they can recognize the need for a description (equation) that incorporates all of the parameters, leading naturally to the use of torque and moment of inertia. Once students recognize the need for such descriptions, these (necessarily) mathematical descriptions become less intimidating because students have a picture of motion (a movie, if you like) in mind to attach to the equation.

![Image](image.png)

Figure I.5.6: Changing parameters to see the effect on the motion in Exploration 10.3.

Understanding Abstract Concepts: Vectors

Crucial to understanding physics is a solid understanding of vectors. The interactive nature of the vectors in *Physlet Physics* helps students understand vector components, vector addition and dot products. For example, in Illustration 6.1 and Exploration 11.1 as shown in Figure I.5.7 (a) and (b), students change the length and orientation of the vectors and they can immediately see the dot-product and magnitude of the cross product (torque) of these vectors. This helps students develop a sense of what a dot or cross product is and why it is used in physics. Additional specific exercises designed to help
students understand vectors include Illustration 3.1, Exploration 3.1 and associated Problems 3.1 and 3.2, Illustration 10.1, and Exploration 11.1.

![Vectors](image1)

![Torque](image2)

| $|\Delta A|$, $|B|$, $\Delta A \times B$ |
|---|---|---|
| +6.9 | +7.3 | +91.2 |

| $|F|$, $|F|$, $|\text{torque}|$ |
|---|---|---|
| +10.0 | +9.3 | +76.0 |

Figure I.5.7: (a) Exploration 6.1 and (b) Illustration 11.1 have students move the vectors and observe how the dot product and cross product (torque) change.

Unique Problems – Connections with Mathematics

There are a number of Physlet-based exercises that require students to enter values in a formula to match to an outcome. We believe this type of exercise can be very beneficial for students because it directly connects mathematical representations with more intuitive representations which can strengthen their overall conceptual understanding. Also, these types of exercises have a “game” aspect to them which can be fun and challenging. As an example, consider Exploration 4.8 shown in Figure I.5.8.

![Graphical Representation](image3)

Figure I.5.8: Exploration 4.8 which encourages students to connect mathematics with motion and a graphical representation.
In this Exploration students are encouraged to input values for the force function as well as values for the initial position and velocity. They can then see the results of their inputs as both motion and a position vs. time graph. This type of exercise is truly interactive as students make predictions and then test them. The Physlet-based exercise provides them direct feedback using multiple representations. Other Physlets which use a similar pedagogy include Explorations 2.4, 2.5, 4.4, 5.5-5.7, 6.4, 8.2, 10.1-10.2, and 12.1-12.2.

Unique Problems – Kinematic Putt-Putt Golf

There are several “putt-putt” problems contained in the mechanics chapters. These problems contain an element of fun since students can calculate the correct initial conditions to “score” and then try their predictions. They also provide a very unique type of problem for the student to work on that requires students to think a bit outside the proverbial box. An example of this type of problem is shown in Figure I.5.9.

Students must determine the initial velocity and acceleration that will project the ball through the two gates to the green hole. The gates open at set times and are closed otherwise so getting the ball into the hole requires careful calculations. Other putt-putt type problems are 2.6 and 2.16.

Unique Problems- Identifying Non-Physical Animations

Since the physics is not built into Physlets, many Physlet-based exercises can model non-physical events. *Physlet Physics* takes advantage of this by asking students to identify the non-physical animations. For example, in Problem 8.7 as shown in Figure I.5.10, students need to identify which collisions could actually occur. Students often try to solve these types of problems by assuming conservation of energy when they should check for conservation of momentum. Addressing this issue explicitly by providing animations that obey conservation of energy, but do not conserve momentum in a collision provides a way for instructors to gauge how well students understand conservation laws. Other problems, such as Problem 8.6 and Problem 12.5, that ask
students to identify non-physical animations address similar fundamental physical descriptions.

Figure I.5.10: Problem 8.7, Identifying non-physical animations.
Chapter I-6: Fluids

The two chapters in the fluids section of Physlet Physics provide nice examples of applications of previous material. The Physlets exercises in this set provide a visualization of fluid problems: specifically fluid flow and a virtual measurement of pressure as a function of depth. They are designed to help students make connections whether it is between the buoyant force and pressure as a function of depth or Bernoulli’s principle and conservation of energy.

What Is Covered?

- The two chapters in this section cover static and dynamic fluid flow.
- There is no discussion of turbulent flow and a limited discussion of viscous flow.

Highlights of Fluids Chapters

Multiple Approaches to Abstract Concept: Buoyant Force

Static Fluids (Chapter 14) provides multiple ways to understand buoyancy. Although students calculate the weight of the water displaced to find the buoyant force, many question (and rightly so) how the displaced water causes a force. Illustrations 14.3 as well as Explorations 14.1 and 14.2 (shown in Figure I.6.1) address this by showing the water displaced (the water is displaced into a nearby container to explicitly show this) and either showing or asking students to calculate the pressures at the top of the liquid and at the bottom of the floating object.

![Figure I.6.1: Buoyant force in Exploration 14.2](image)

Forcing students to do this calculation as well as seeing how the force varies as you change parameters, helps students to understand the origin of the buoyant force (which is not due to the liquid that has fallen out of the container; that simply provides a convenient way to calculate the value of the force). The associated problems are designed to reinforce this idea (particularly Problem 14.10 in association with Exploration 14.3).

Visualizing Dynamics: Continuity Equation and Bernoulli’s principle

In dynamic fluids (Chapter 15), the Physlet-based exercises emphasize the application of the continuity equation and Bernoulli’s equation for ideal fluids while providing a few examples of non-ideal fluids. For ease of visualization, the Physlets animate static textbook diagrams to help explain the continuity equation. For most students, seeing a volume of fluid going from a wider to in a narrower pipe where it moves faster, makes the associated equation more concrete (and obvious to many students). See, for example, Illustration 15.1 or Exploration 15.1 (shown in Figure I.6.2) and Problem 15.1.

Connections to Mechanics

In Exploration 15.2, shown in Figure I.6.3, students use their knowledge of mechanics to develop Bernoulli’s equation while Exploration 15.3 is an animation of a standard textbook application of Bernoulli’s principle: water leaking from a large barrel. Both provide some hints on applying Bernoulli’s equation that will be useful for both textbook problems as well as the associated Physlet-based problems (Problems 15.3-15.9, Problem 15.4 is shown in Figure I.6.4). Before the student knows what measurements to make (how far did the stream of water travel, height of water in the container), he/she must connect Bernoulli’s principle with projectile motion and then use equations.
Chapter I-7: Oscillations and Waves

An analysis of waves and wave motion is typically very mathematical and very difficult to demonstrate with traditional means. However, the mathematics leads to a visible representation that is less abstract than many topics in physics. The Physlet-based exercises in these chapters utilize the power of visual and dynamic representations to make the connection between the mathematics and the concepts of waves and oscillations.

What Is Covered?

- Chapter 16 develops the mathematical ideas underlying wave motion focusing on simple harmonic motion associated with springs and pendulum. Advanced topics of damping/driving forces, Fourier series, and phase space representation are also covered in this chapter.
- Chapter 17 deals with wave motion in general covering wave types, superposition, resonance, reflection at a barrier, standing waves, and wave velocity.
- Chapter 18 is really an application of the ideas developed in Chapters 16 and 17 to sound waves.
- Superposition and interference of waves is also covered in the optics chapters 37 (Interference) and 38 (Diffraction).

Highlights of Waves Chapters

Connecting Mathematical and Visible Representations

Students often have difficulty connecting the mathematical representation of a wave to the visual representation of a wave. Many of the Physlet-based exercises push students to make this connection by requiring them to input a mathematical function. For example, consider Exploration 17.2, shown in Figure I.7.1.

![Figure I.7.1 – Exploration 17.2 which asks students to input a function to match a waveform.](image)
This Exploration presents students with a wave form. Students must measure properties of the wave form in order to determine the proper mathematical function that describes the wave form. Since this is a traveling wave, the wave must match not only in form, but also in velocity. We have found this type of exercise to be very difficult for students because they must solidly understand the connections between the visible representation of the wave and the mathematical formalism. Having students work through these types of exercises forces them to make these connections. Physlet-based exercises that require students to input a wave function are found throughout these chapters, especially in Chapter 17.

Learning Through Visualization

As with all other chapters, there are many Physlets in the waves chapters that are excellent for showing concepts in a way that could not be replicated with a static paper-based diagram. The following highlights some of our favorites.

Consider Illustration 16.1, shown in Figure I.7.2.

![Illustration 16.1](image)

Figure I.7.2 – Illustration 16.1, an animated version of a static diagram.

This Illustration is merely an animation of a diagram that is often found in physics textbooks. However, the animation really brings this Illustration to life as it demonstrates the connection between an obvious simple harmonic oscillator (mass on a spring), and a system that can be represented as a simple harmonic oscillator (mass on a turntable), and the graphical representation of the SHM. For the student having difficulty connecting the motion to the graph, seeing the two occur simultaneously can be of tremendous benefit.

Another Illustration we have found to be particularly helpful for visualization reasons is Illustration 17.5, shown in Figure I.7.3, which demonstrates resonance.
In this Physlet-based exercise, a hand shakes a rope creating a pulse. In the top rope, the hand sends a pulse synchronized with the existing pulse, in the bottom rope the hand acts out of sync with the existing pulse(s). Students can clearly see that energy is transferred constructively in the top case and nonconstructively in the bottom.

Another excellent example is Illustration 17.4 shown in Figure I.7.4.

Illustration 17.4 begins with a right- and left-traveling wave incident from their respective sides. As the waves begin to overlap each other a standing wave is clearly seen. The effect is very striking, even for physics instructors who already have a firm grasp of the underlying concepts. Students can slowly step through the process as the two waves superimpose to understand how two traveling waves can add to a standing wave.

Another Illustration, of which we are particularly fond of for visualization reasons, is Illustration 18.2 shown in Figure I.7.5.
This Illustration shows students how sound is a wave, and that it is a longitudinal wave. Students see the molecules of air being compressed by the pressure wave of sound. Many students do not understand the nature of sound and too easily accept that it is a wave without understanding the underlying process. Illustration 18.2 makes this process explicit and in doing so, also shows clearly that the molecules are vibrating in the direction of wave motion, making it a longitudinal wave.

Finally, we would like to point out the Illustration and Exploration dealing with the Doppler effect. Illustration 18.4 is shown in Figure I.7.6. Exploration 18.5 is not shown but is also a wonderful tool for demonstrating the effect of motion on perceived sound waves.

The underlying causes of the Doppler effect are amazingly clear after viewing the animations included with Illustration 18.4. These animations show various relative motions between a source of sound and a detector. For example, in Animation 3, depicted in the figure, the detector remains stationary while the source moves toward it. As the animation plays, it is clear that sound emits in all directions symmetrically about the source but the waves arrive bunched up, or far apart, due to the motion of the source. This visualization of the Doppler effect can help students to understand the underlying ideas.
Wave Superposition

The addition of multiple waves is an important concept to consider in any study of waves. We believe Physlet-based exercises are ideal for showing students the effects of wave superposition. Above, we discussed Illustration 17.4, which demonstrates the addition of waves to produce a standing wave. There are many other superposition-based Physlet exercises throughout these three chapters. For example, Exploration 17.4 allows students to change the parameters of a wave and then view the superposition of their wave and another wave. Exploration 17.1 presents students with several pulses and shows them how these pulses interfere. Explorations 18.1 and 18.2 (shown in Figure I.7.7) allow students to add multiple waves as harmonics.

As the amplitude of the different harmonics is varied from zero, the resulting sound is played through the computers speakers for the student to hear. These Explorations provide a wonderful way to introduce students to both the superposition of waves and also of electronically produced music.
Chapter I-8: Thermodynamics

As is true of earlier chapters, using Physlet-based exercises to aid teaching topics covered in thermodynamics provides several advantages. Specifically for thermodynamics, a model of ideal gas particles in a box provides a concrete visual for abstract concepts as students make connections between microscopic and macroscopic quantities. Students can also change parameters in Physlet-based exercises included here to develop or verify a series of useful equations (e.g., linear expansion, specific heat of solid, work done by a gas, specific heat of a gas at constant pressure and volume, efficiency of engines). The Physlets can help students use the analytic tools including dynamic connections between graphs and thermodynamic processes. Physlets also simplify modeling “real-world” applications specifically showing engine processes and their associated heat and work diagrams. Finally, these thermodynamic exercises challenge students to move away from “equation shopping”, and to consider the type of problem (What type of thermodynamic process does the problem animate?) and required information (What data do I need to collect from the animation?) before simply dropping numbers into an equation.

What Is Covered?
- The three chapters in this section cover temperature and heat, kinetic theory and engines and entropy.
- There is only limited discussion of heat transfer via convection or radiation (and no associated problems).
- Essentially no discussion of non-ideal gases or non-ideal engines.

Highlights of Thermodynamics Chapters

Effect of Changing Parameters on a System

![Figure I.8.1: Calorimetry and Exploration 19.3](image)

Starting with the first chapter in the thermodynamics section (Chapter 19: Heat and Temperature), the Physlet-based exercises cover the standard range of topics: expansion, calorimetry and heat balance problems. Students can try several of the Explorations that lead them to develop the relationships codified in equations useful for these topics. These exercises also allow them to get data for a variety of idealized scenarios that would
take a long time to record in the laboratory. Exploration 19.3, shown in Figure I.8.1, (and Illustration 19.1, Problems 19.6-19.8), for example, provides students with idealized calorimetry data. Students can change the temperatures and mass of the materials and are then asked to find the heat exchanged (Exploration 19.3) or the specific heat (Illustration 19.1). These can be used, for example, to prepare students for a calorimetry laboratory: helping them look at the problem before they get immersed in the thick of data collection.

Similarly, Exploration 19.2 allows students to change different parameters to discover a (albeit idealized) relationship between expansion of a solid, temperature change, and size of the solid while Exploration 19.1 (and Problems 19.1 and 19.2) forces students to make the connection between mechanical energy and heat.

Microscopic Models

![Image of gas particles in a box](image)

Figure I.8.2: Gas particles in a box in Exploration 20.1

For ideal gases (Chapter 20), the visualization aid available from Physlets is particularly useful in developing a microscopic model of gas particles in a box. Here we introduce a set of new Physlet-based exercises that contain hard spherical particles which collide elastically with the walls and each other, modeling an ideal gas. The volume, temperature, and number of particles can be changed and several Illustrations, Explorations and Problems center on these Physlet-based exercises. Exploration 20.3 allows students to explore ideal gas laws while Exploration 20.1, shown in Figure I.8.2, (and Illustration 20.2) makes explicit the connection between the properties of individual particles (momentum and kinetic energy) and the macroscopic quantities of thermodynamic systems: pressure and temperature. As students work through the steps of Exploration 20.1, starting with one particle, calculating the change in momentum, average force and then pressure, changing the mass, temperature and number of particles, they develop (derive for themselves) that the average internal energy of a particle in a gas per degree of freedom is $\frac{1}{2}kT$. They can use Exploration 20.4 (and Problem 20.4) to get a true sense of equipartition of energy as these exercises separate out the contributions to total kinetic energy from atoms and rigid rotor, diatomic molecules.

Since Physlets are dynamic, students can see the moving particles (representing gas atoms) and their different speeds which are ever changing due to collisions. Illustration 20.1 makes the constantly changing speeds explicit as students see a dynamically changing Maxwell-Boltzmann distribution. This can quickly dispel the student belief that all the atoms have the same speed. It also gives students the clearer picture of why the
particle speeds are constantly changing and the need for a defined characteristic speed (whether it be rms, average or mean speed).

Multiple Representations of Thermodynamic Processes

With Physlets, the tools students use to analyze problems, namely PV diagrams, need not be separated from the fundamental picture of box teeming with moving, colliding particles. Students can see a dynamic expansion on both the PV diagram and the particle container. Furthermore, as in Exploration 20.5 or Exploration 20.6, shown in Figure I.8.3, the work done (area under the curve) is clearly shown. These types of exercises help students understand why we use PV diagrams especially when they can see the dynamic connections between the diagram, the particles in a box, and the work done by the gas. Additionally, students get a much better sense of the difference between the different named thermodynamic processes (isobaric, isothermal, isochoric, adiabatic), if they can directly compare them as in Illustration 20.3 (and as they are asked to calculate the work done or heat added in Problems 20.8-20.11).

Understanding how to read PV diagrams is crucial in analyzing engine cycles as well, so once students are familiar with them, we use these again to illustrate engine cycles: explicitly showing when the gas is in contact with a hot and cold reservoir. Again, the advantage is the ability of the Physlet to easily connect the dynamics of the expansion and compression with the path on the PV diagram and net work associated with the complete engine cycle.
The Otto Engine

Probably the most complex, but least abstract, engine process in this set is the Otto Engine (Exploration 21.2, shown in Figure I.8.4, and Problem 21.4). This animation shows a model of a combustion engine and the associated PV diagram. As the piston moves up and down, the point on the PV diagram is shown until the complete path is drawn. Students will need to work through this example, stopping at a number of points on the path, to fully understand what is happening. However, they can, quite quickly, determine the efficiency of this engine and it helps them connect the abstract PV diagrams of physics to a simplified version of real-world combustion engines in their cars.

Multiple Approaches to Abstract Concept: Entropy

Finally, when it comes to entropy, there are several Illustrations and Explorations to allow different approaches to entropy: Exploration 21.3 guides students through the connection between entropy and microstates (statistics) while Illustration 21.3 connects entropy to the Second law of thermodynamics and Illustration 21.4 connects entropy to engine efficiency. Problems 21.6 and 21.7 require entropy calculations for different thermodynamic processes (including engine processes).
Chapter I-9: Electromagnetism

In these chapters, we exploit the power of Physlets to help students visualize abstractions: electric and magnetic fields (vector and field line representations), equipotential surfaces, force vectors, induced currents and emfs, and microscopic models of electrodynamics. These exercises help students to understand and use the multiple representations employed with these topics. We encourage and even, at times, require that students take advantage of the ability of the Physlet to quickly model what happens when different system parameters are changed. These Physlet-based exercises are also designed to help students make connections between the individual chapters and connections back to mechanics.

What Is Covered?

• The chapters in this section start with electrostatics and end with Faraday’s law, covering introductory physics material on Maxwell’s equation.
• Circuits, both DC and AC, are included in their own part of Physlet Physics.
• Electromagnetic waves make up the first chapter of the Optics part of Physlet Physics.

Highlights of Electromagnetism Chapters

Visualizing Abstract Concepts: Electric and Magnetic Fields

Since electromagnetism depends so heavily on the understanding of fields, which are abstractions removed very far from students’ experiences, the extra visualization provided by Physlets is particularly valuable.

Consider a simple example in electrostatics from Illustration 23.2 shown in Figure I.9.1: the electric field from a two point charges. The Physlet quickly simulates the vector field and students can see the effect of changing the charge and the distance between the charges. Not only can students see the field, this also addresses a common misunderstanding that students have. When the charges are not equal (often not illustrated explicitly in books), students tend to think that the larger charge experiences the larger force since \(\mathbf{F} = q \mathbf{E} \) and \(q \) is bigger. Or, students may think that the smaller
charge experiences the larger force because it is experiencing a force due to a larger charge. Using this exercise, though, students can quickly realize that the force is equal and opposite and as they move the charges around, they can see that these forces are a linked pair and constitute a Newton’s third law pair.

Students can also create charge distributions and see both vector field representations as well as field line representations common in textbooks. Similarly, they can see magnetic vector field representations as well as field line plots as is demonstrated in Figure I.9.2. This helps students connect charges (currents/magnets) with vectors and the field line representations in textbooks. Being able to make these connections is crucial to the development of the theory that follows. Also, when students have a chance to create their own electric or magnetic distributions and see the resulting fields, it helps them get a better handle on these abstractions.

Encouraging Students to Conceptualize

Even though these Physlets do more computational work than a student (or instructor) could do in a finite time frame, they do not do so much work that there is nothing left for the student to do. Quite the contrary! Students must think deeply about the problems and truly understand the concepts to work many of the problems. Consider, for example, Problem 22.8 (Figure I.9.3).

A positive test charge of 1×10^{-5} C with a mass of 0.9 kg is shown near a variable charge with a fixed position (at the origin). You may change the charge of the central charge and the initial velocity of the test charge (position is given in meters and time is given in seconds).

What initial velocity must you give the test charge so that the test charge can make it from its starting place to the finish line in a circular path?

Although the Physlet calculates the field, the student must figure out for herself or himself the appropriate initial velocity so that the pink test charge (of 10^{-5} C) will make it into the “Finish” box for different values of the center blue positive charge. As in other
Physlet-based Problems, the student must decide what to measure (the radius of the desired motion). To solve this Problem, the student must use tools from mechanics (circular motion) in combination with Coulomb’s law. Students can quickly test answers, but gaming alone (by testing a variety of answers), although fun, probably will not allow them to develop a general relationship.

Connecting Mathematical and Physical Ideas: Important for Electromagnetism

Because of the mathematical nature of much of electromagnetism, there are a number of Physlet-based exercises that help students to connect these somewhat abstract and advanced mathematical ideas with the physical concepts they represent. For example, the power of the Physlet to calculate a variety of charge configurations is used to help students understand the need for symmetry to use Gauss’s law. Figure I.9.4 shows one view of a filament from Illustration 24.2 with a flux “detector” (the red square with its output reading on the bar graph to the left).

![Figure I.9.4: View of a charged filament in Illustration 24.2](image)

This same Illustration can show a close-up view of the filament and a view from far away along with flux “detectors” of the same geometry as the charge distribution. In the other two cases, the symmetry is such that you can use Gauss’s law to calculate the electric field. Students can quickly compare the direction of the electric field with the geometry of the flux “detector”, or Gaussian surface. The same holds true for magnetism and the symmetry needed for Ampere’s law as demonstrated in Exploration 28.2 (Figure I.9.5). For Ampere’s law, Physlets provide an additional advantage with a dynamic calculation of the path integral as a student moves a cursor around on a screen. In this Exploration, value of the path integral is shown in the bar graph to the right (as well as in a table).

![Figure I.9.5: Black Amperian “loop” (square) surrounding a plane of current carrying wires in Exploration 28.2.](image)
Microscopic Models

Students can also use Physlet-based exercises to help visualize what happens at a microscopic level in the presence of electromagnetic fields. Consider Illustration 26.4, shown in Figure I.9.6, which shows a model of a capacitor at the microscopic level. Here, the electrons (represented in blue) separate from the underlying bound charge and build up on the plates of a capacitor. Having a microscopic model can help students understand how current can flow when a capacitor is in a circuit even though charge does not pass between the two plates of a capacitor.

![Figure I.9.6: Microscopic model of charges on capacitors connected in series in Illustration 26.4.](image)

Simplification

Physlets can also provide a simplified model of a real-world system, keeping the dynamics of what occurs in the actual application. This can be particularly important in electromagnetism where many concepts are abstract for students. Consider Problem 29.10, shown in Figure I.9.7, which deals with an electric generator (explained in Illustration 29.3) consisting of a wire loop rotating in an external magnetic field.

![Figure I.9.7: Problem 29.10 a simple model of an electric generator.](image)

The graph on the right shows the induced emf through the loop as a function of time (position is given in centimeters, time is given in seconds, and emf is given in millivolts). The green arrow shows the direction and magnitude of the induced current.

a. What is the magnitude of the magnetic field?
b. Looking down on this loop from above, in what direction is it rotating (clockwise or counterclockwise)? Explain your answer.
The Physlet Problem shows the motion and the associated induced emf, but strips away the rest of the details of a generator to get to Faraday’s laws which is the basis for understanding the generator. This Problem demonstrates another feature of Physlet Problems: new types of problems unique to animations. In this Problem, students must decide which way the loop is rotating to create the induced current shown by the green arrow, which is only possible in an animation.

Connections to Mechanics

Throughout this section, various exercises recall connections to mechanics, particularly in Chapter 25: Electric Potential. For example, in Illustration 25.2, shown in Figure I.9.8, the work required to move the red test charge from one equipotential contour (green and brown contours) to another appears in the bar graph to the right. At the same time, the animation depicts the force on the particle showing that the force changes with position (requiring an integral calculation for the work). Associated Problems require that students measure the change in kinetic energy of a moving charge with the change in potential.

![Figure I.9.8: Equipotential contours and work to move the red test charge in Illustration 25.2.](image)

Real-World Applications of Electromagnetism

There are several applications of electromagnetism that are introduced in *Physlet Physics*. For example, Illustration 23.4 shows students how cathode ray tubes operate, Illustration 27.3 demonstrates the mass spectrometer, Illustration 22.4 discusses static cling, and Illustration 29.3 demonstrates the electric generator. In addition to these Illustrations, you will also find Explorations and Problems dealing with these applications.
Chapter I-11: Optics

Optics is, by definition, very visual. Therefore, the topic lends itself quite well to integration with Physlets. In our experience, students usually find the Physlet-based exercises in this section to be fun and interesting, perhaps because of the nature of “play” that follows so naturally from them.

What Is Covered?

- The chapters in this section cover electromagnetic waves, ray optics (mirrors, lenses and refraction), and wave optics (interference, diffraction, and polarization).
- The optics appendix, “What’s Behind the Curtain”, presents students with a hidden optical element that could be a flat mirror, concave mirror, convex mirror, converging lens or diverging lens. The student must determine what kind of element is hidden. These questions were placed in an appendix because they encompass ideas from several chapters.
- Chapter 36 combines ideas from previous chapters with a focus on real applications of optics concepts.

Highlights of Optics Chapters

Multiple Solution Methods in Optics Bench-Problems

Many of the Problems in these chapters ask student to find the focal length of an optical element. As an instructor, you will find that students will approach these problems using a variety of solving methods. For example, consider Problem 33.1 shown in Figure I.11.1.

A point source is located to the left of a mirror. You can drag this point source to any position (position is given in meters and angle is given in degrees). Find the focal length of the mirror.

Notice that students are asked to find the focal length but are not given any variables. They must determine what information is relevant to answer the question (Where does an incoming parallel ray cross the principal axis?) and then interact with the Physlet to get that information (in this case, at x = 2.4 cm). They can then use this information to solve the problem. The student must also find the location of the mirror to determine the focal length. A “plug-n-chug” approach will not be effective in this problem as there is
nothing to “plug” until some conceptualization of the problem has been done. It is also important to note that while the problem contains no overt “givens”, it provides the means to access a plethora of information, most of which is unnecessary for the solution. Just as with real-world problems, the students must decide how to focus their efforts and what information to ignore.

Now, you may argue that the Physlet is unnecessary. After all, the problem can be asked and solved with just a picture and a ruler. But such an argument misses an important point. Students can not interact with a static picture. We have seen the benefit of interactivity in three very specific ways: the ability of the students to be creative, the learning opportunities provided, and the likelihood of students demonstrating misconceptions.

In the above example a solution was suggested based on finding where a parallel ray crossed the principal axis. If a static picture was all students had to work with, then the above solution would be the only method available. However, when working with the Physlet, students have the freedom to look at the problem from alternative angles. If a class is presented with this problem it is likely that a portion of the class will obtain a correct answer by moving the source along the principal axis to the point where all rays leaving the source are reflected parallel, thereby identifying the focal point. However, there are four methods that a student could correctly use to answer this question. They are

1. Place the source where the rays are reflected parallel, as discussed above.
2. Place the source above the principal axis and follow an incoming parallel ray to see where it crosses the principal axis, that will be the focal point.
3. Place the source on the principle such that the rays are reflected and refocus at the same point of the source, that will be the radius of curvature, which is twice the focal length.
4. Measure the distance from the mirror to the source (the object distance), measure the distance from the mirror to where the rays converge (the image distance), and use the mirror equation to find the focal length.

Physlet Problems allow for creativity on the part of the student that is difficult to replicate in a paper-based problem.

Unique Problems: What is Behind the Curtain?

The Optics chapters include a number of Problems where students are given a source (point, infinite beam, or object) and a region hidden from view. They are asked to determine what optical element is behind the curtain. In the example shown in Figure I.11.2 (Problem 35.2), students are shown four such regions, asked to identify what is behind each curtain, and then asked to rank the objects in terms of their focal lengths. Students can move and resize the sources.
In this particular problem, different types of sources are used so that students must utilize their understanding of each. For Curtain A, students must change the location of the object and note that the image is always on the same side of the mystery element as the object. At this point it is reasonable for the students to guess that a diverging lens is behind the screen. Further manipulation of the location and height of the object confirms this assertion. For Curtain B, students need to note that the element has no effect on the light. There is nothing behind Curtain B. Curtains C and D both contain converging lenses which students could deduce by observing the direction incoming rays are bent.

In order to rank the focal lengths of the mystery objects, students must first recognize that the focal length of the diverging lens is negative and that it is positive for the two converging lenses. This makes it unnecessary to calculate the actual focal length of the diverging lens, though it could easily be done by noting the locations of the object and image and using the lens equation. The focal lengths of the two converging lenses can be compared by noting where parallel rays converge.

Simplification: A Model of the Eye and Camera

Students are usually motivated by problems they see as relevant to their everyday lives. Our students found the Physlet that models the eye to be exciting and relevant, and claimed it helped them to visualize the functioning of the eye. Students are asked to consider the eye in Illustration 36.2 (shown in Figure I.11.3) and in Problems 36.1-36.3. The Physlet allows students to simulate a healthy eye, a nearsighted eye, or a farsighted eye. They can view how either a far away source or near source is focused by the eye and can use the slider at the bottom to simulate accommodation of the eye. Finally, they can add an eyeglass and change the focal length of this lens to “prescribe” glasses. Note that, the eye is not shown to scale and units are arbitrary because the actual scale is too small to allow the functioning of the eye to be noticeable.
In order to answer the Problems associated with the model of the eye correctly, students must have a strong conceptual understanding of the operation of lenses, especially as that operation relates to the optical system of the eye. Students who have this understanding can easily answer this question. Students who have misunderstandings will find it difficult to answer the question. We used this question on an exam and found it to be beneficial for assessing student understanding.

Similar to the model of the eye, Chapter 36 also contains an Illustration (Illustration 36.2) and an Exploration (Exploration 36.1) that models a camera. This model includes normal, telephoto, and wide-angle lenses. The Exploration guides students through the operation of the various lenses.

Connections to Index of Refraction

You will find a number of Physlets that deal with the index of refraction. Because Physlets can easily show the path of light through various mediums, they are ideally suited for this topic. In the example, shown in Figure I.11.4, students are presented with an applet that displays a point source and a lens.
The index of refraction of the medium surrounding the lens can be changed. As the index of refraction is changed, the color of the background varies as a visual clue to the index change. Students are then asked to find the index of refraction of the lens. In order to determine the index of refraction of the lens, students can change the index of refraction of the medium surrounding the lens until the light passing through the lens is unaffected. At that point, the index of refraction of the lens must be the same as the index of refraction of the surrounding medium.

Although this is a fairly easy problem for students, the process of solving the problem can help students to develop their understandings of refraction and lens operation. The problem reinforces the idea that lenses work by means of a different index of refraction from the surrounding medium. It can also be used to help students see that a “converging” lens is only converging if placed in a medium where the index of refraction of the medium is less than that of the lens. A glass lens in air will be converging, but if the same glass lens is placed in a medium of higher index of refraction it will act as a diverging lens. These issues are important for developing a conceptual understanding of lenses but are often glossed over in traditional instruction. Students are then ready to use Explorations 34.3 and Explorations 35.5 to “build” lenses by changing the index of refraction and radius of curvature of dielectric materials (see Figure I.11.5 below).

Figure I.11.5: Using the lens maker’s equation in Exploration 35.5.

Physlets are also well-suited to help students understand the connection between total internal reflection and refraction. As students change the angle of the light entering a medium (they simply need to click drag on a light ray to change its angle), they can see the refraction and how that refraction leads to total internal reflection. This allows them to solve more complicated problems such as Problem 34.7 as shown in Figure I.11.6.
Four materials are next to each other and the change in the index of refraction from one to the next is the same. You can use the moveable green protractor and click-drag to measure angles.

What is the index of refraction of region D? Explain your observations as you drag the source through each of the different materials (why is there total internal reflection between some interfaces, but not others?).

Figure I.11.6-Total internal reflection in Problem 34.7.

Ripple Tank Simulation
Another particularly nice use of Physlets is to simulate a ripple tank. Unlike a physical ripple tank, the applet creates no mess and can be made accessible to students outside of class. There are a number of Problems and Explorations that utilize the ripple tank, especially in the interference and diffraction chapters. The most basic form of the ripple tank in presented in Illustration 37.1, shown in Figure I.11.7.

Figure I.11.7 – Illustration 37.1, a no mess ripple tank.

The Illustration can be used in class or as an out of class tool for students to play with as they construct their understandings. The applet allows the user to create any number of wave sources, put them at any location, and specify their amplitude and phase. The wavelengths of all the sources must be the same, but can be set to a desired value. When the applet plays, waves can be seen moving away from the sources, just as with a ripple tank.

Visualizing Abstract Concepts: Polarization
Making the connection between electromagnetic waves and physical optics is often difficult for students and this difficulty often appears when students try to understand polarization (especially circularly polarized light). A combination of two different representations of polarization can help students understand the connection between waves, light, and polarization. Exploration 39.1, shown in Figure I-11.8, allows students to input values for the amplitude of the electric field in the x and y directions as well as the phase shift between the two waves.

As the text of the Exploration directs students to try different inputs for the amplitudes of the fields and the phase angle, they can learn how to create linearly, circularly and elliptically polarized light and the connection between the equations and the polarization. Another representation of polarization shows a traveling wave. In this representation, used in Illustration 39.2 and shown in Figure I.11.9, students can not only see a polarized traveling wave, they can also see the effect of a polarizing film.
Part II

Discussion of Illustrations, and Solutions to Problems
Chapter II.1: Introduction

Illustrations

Illustration 1.1: Static Text Images Versus Physlet Animations

Topic(s): Control Buttons, Links

Purpose: To introduce the features of Physlet animations.

Suggested Use: Have students read through illustration as a way of orientating them to the *Physlet Physics* workbook. Advanced students will probably be able to figure out most of the features without the help of this illustration but younger students or the less technologically inclined will find it a gentle introduction.

Illustration 1.2: Animations, Units, and Measurement

Topic(s): Making Measurements

Purpose: To alert students to issues regarding how to take measurements from a Physlet.

Suggested Use: Have students read through illustration as a way of orientating them to the *Physlet Physics* workbook. Advanced students will probably be able to figure out most of the features without the help of this illustration but younger students or the less technologically inclined will find it a gentle introduction.

Illustration 1.3: Getting Data Out

Topic(s): Representations of Quantities

Purpose: To further orient students to aspects of using *Physlet Physics*.

Suggested Use: Have students read through illustration as a way of orientating them to the *Physlet Physics* workbook. Advanced students will probably be able to figure out most of the features without the help of this illustration but younger students or the less technologically inclined will find it a gentle introduction.

Explorations

Exploration 1.1 - Click-Drag to Get Position

Topic(s): Making Measurements

Exploration 1.2 - Animations, Units, and Measurement

Topic(s): Inputting Data

Exploration 1.3 - Getting Data Out

Topic(s): Inputting Formulas
Problems

P.1.1 (Level 1)
Topic(s): Vernier Caliper
Answer:
Animation 1 – 0.32 cm
Animation 2 – 2.46 cm
Animation 3 – 0.68 cm
Animation 4 – 1.29 cm

P.1.2 (Level 1)
Topic(s): Taking Data
Answer:
a) slope = 1.28 cm/s, intercept = -10.29 cm
b) slope = velocity of car at t=0.

P.1.3 (Level 1)
Topic(s): Interacting with Physlet, Displacement, Velocity, Acceleration
Answer:
a) Position is the easiest, acceleration is the most difficult.
b) Since velocity is the change in position relative to a change in time, any errors made in positioning the truck will be compounded in the velocity measurement. Likewise, since acceleration is the change in velocity relative to some change in time, the errors with velocity will be magnified for acceleration.
Chapter II.2: One-dimensional Kinematics

Illustrations

Illustration 2.1: Position and Displacement

Topic(s): Displacement, Graphical Representation of Motion

Purpose: To introduce the concepts of position, displacement, and position graphs.

Suggested Use: Describe the motion of the trucks to students and have them predict the graph for each animation before it is played. Differences in the graphs and incorrect predictions can then be discussed.

Illustration 2.2: Average Velocity

Topic(s): Velocity, Graphical Representation of Motion

Purpose: To introduce the concept of average velocity.

Suggested Use: Physlet can be used in class as a visual representation when introducing the concept of velocity. The dynamic-visual nature can help students make the connection between the mathematics and the concepts.

Illustration 2.3: Average and Instantaneous Velocity

Topic(s): Velocity, Graphical Representation of Motion

Purpose: To introduce the concept of velocity.

Suggested Use: Just as with Illustration 2.2, this illustration can be used to help students make connections between ideas and mathematics. Use as an in-class when introducing concepts.

Illustration 2.4: Constant Acceleration and Measurement

Topic(s): Acceleration

Purpose: To guide students through the process of determining acceleration from a Physlet.

Suggested Use: Reading assignment for students who may have trouble figuring out how to determine acceleration on their own. It is important that students know how to make measurements from the Physlet to determine acceleration as they will be required to do so in many problems throughout *Physlet Physics*.

Illustration 2.5: Motion on a Hill or Ramp

Topic(s): Displacement, Velocity, Acceleration, Graphical Representation of Motion

Purpose: To further develop ideas about position, velocity and acceleration.

Suggested Use: Reading assignment for students who might have difficulty with these concepts. Could also be used in class as a predict and explain exercise. Describe (or show) the motion and have students predict the graph. Differences in the graphs and incorrect predictions can then be discussed.
Illustration 2.6: Free Fall

Topic(s): Free Fall, Graphical Representation of Motion
Purpose: To introduce the concepts of free fall.
Suggested Use: As with previous Illustrations, this Illustration can be used in class by having students predict the graphs that will be produced from the situations modeled in the three animations. Differences in the graphs and incorrect predictions can then be discussed.

Explorations

Exploration 2.1 – Compare Position vs. Time and Velocity vs. Time Graphs
Topic(s): Displacement, Graphical Representation of Motion

Exploration 2.2 – Determine the Correct Graph
Topic(s): Displacement, Velocity, Graphical Representation of Motion
Answers: b) Graph A is correct, c) Graph D is correct.

Exploration 2.3 – A Curtain Blocks Your View of a Golf Ball
Topic(s): Velocity, Graphical Representation of Motion

Exploration 2.4 – Set the x(t) of a Monster Truck
Topic(s): Kinematics, Graphical Representation of Motion

Exploration 2.5 – Determine x(t) and v(t) of the Lamborghini
Topic(s): Kinematics, Graphical Representation of Motion

Exploration 2.6 – Toss the Ball to Barely Touch the Ceiling
Topic(s): Kinematics, Free-Fall

Exploration 2.7 – Drop Two Balls; One with a Delayed Drop
Topic(s): Free-Fall

Exploration 2.8 – Determine the Area Under a(t) and v(t)
Topic(s): Position, Velocity, Acceleration, Graphical Representation of Motion

Problems

P.2.1 (Level 1)
Topic(s): Displacement, Graphical Representation of Motion
Answer: Animation 3
P.2.2 (Level 1)
Topic(s): Displacement, Velocity, Acceleration
Answer:

<table>
<thead>
<tr>
<th>time (t)</th>
<th>displacement Δx</th>
<th>distance</th>
<th>avg. velocity Δx/Δt</th>
<th>speed (Δx/Δt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t=1.5s to 2s, (Δt=0.5s)</td>
<td>0</td>
<td>+9m</td>
<td>18m</td>
<td>0</td>
</tr>
<tr>
<td>t=1.5s to 6s, (Δt=4.5s)</td>
<td>+9m</td>
<td>+9m</td>
<td>+2m/s</td>
<td>2 m/s</td>
</tr>
<tr>
<td>t=6s to 12s, (Δt=6s)</td>
<td>-9m</td>
<td>+9m</td>
<td>-1.5m/s</td>
<td>1.5 m/s</td>
</tr>
</tbody>
</table>

b) From 1.5s to 6s

c) No

d) Yes

e) No, the displacement could be less than the distance traveled.

f) a) Measurements were made at the base of the ball.
\[X_{15} = -9m, X_0 = X_{\text{max}} = 0, X_{15} = -9m \]

P.2.3 (Level 1)
Topic(s): Velocity, Graphical Representation of Motion
Answer: Animation 1

P.2.4 (Level 1)
Topic(s): Velocity, Graphical Representation of Motion
Answer: a) Blue ball wins, b) The blue ball has the greater average velocity as can be seen from the graph.

P.2.5 (Level 1)
Topic(s): Velocity, Graphical Representation of Motion
Answer:
P.2.6 (Level 2)
Topic(s): Velocity
Answer: 7.5 cm/s

P.2.7 (Level 2)
Topic(s): Kinematics
Answer:
P.2.8 (Level 2)

Topic(s): Kinematics, Graphical Representation of Motion

Answer:

a) Need to find x_{purple}

\[t = 0, \quad v_{\text{purple}} = -5 \text{ m/s}, \quad x_0 = 8 \text{ m} \]

\[t = 1.5, \quad v_{\text{purple}} = -5 \text{ m/s}, \quad x_1 = 27.5 \text{ m} \]

\[v = v_0 + at \]

\[5 \text{ m/s} = -5 \text{ m/s} + a(1.5) \]

\[a = 0 \text{ m/s}^2 \]

When cars pass,

\[x_{\text{purple}} = x_{\text{yellow}} \]

\[x_{p} + v_{p}t + \frac{1}{2}a_{p}t^2 = x_{o} + v_{o}t + \frac{1}{2}a_{o}t^2 \]

\[2m + (-5 \text{ m/s})t + \frac{1}{2}(-0.5 \text{ m/s}^2)t^2 = 5m + (-5 \text{ m/s})t + 0 \]

\[3 - 0.25t^2 = 0 \]

\[t = 3.5 \text{ s} \]

b) $x_{\text{yellow}} = x_{o} + v_{o}t$

\[x_{\text{yellow}} = 5 \text{ m} - 5 \text{ m/s}(3.5 \text{ s}) = -12.5 \text{ m} \]

c) Yellow = straight line since $a_{\text{yellow}} = 0$

Purple = curved
P.2.9 (Level 2)
Topic(s): Velocity, Acceleration, Graphical Representation of Motion
Answer: a) Increasing, b) constant, c) 0.05 m/s^2

P.2.10 (Level 2)
Topic(s): Kinematics
Answer: a) 2 m/s, b) 10.2 s, c) 20.7 m, d) 20 m/s

P.2.11 (Level 1)
Topic(s): Velocity, Acceleration, Graphical Representation of Motion
Answer: a) increasing, b) decreasing, c) displacement, d) 0.53 m/s^2, e) decreases

P.2.12 (Level 1)
Topic(s): Acceleration, Graphical Representation of Motion
Answer: a) around t=0.12s, t=0.38s, t=0.62s, … b) first max at t=0.26 s, first min at t=0 s, c) zero

P.2.13 (Level 2)
Topic(s): Kinematics, Graphical Representation of Motion
Answer: -5.4 m/s
a = 1.7 m/s^2

P.2.14 (Level 2)
Topic(s): Kinematics, Graphical Representation of Motion
Answer: a) alow = 0, ahill = 2.5 m/s^2, ahigh = 0, b) velocity is increasing, speed is decreasing, c) 4.6 m/s

P.2.15 (Level 3)
Topic(s): Kinematics
Answer: a=4cm/s^2, v=2cm/s
P.2.16 (Level 3)

Topic(s): Kinematics

Answer: \(a = -2 \text{ cm/s}^2, v = 12 \text{ cm/s} \)

P.2.17 (Level 3)

Topic(s): Kinematics

Answer:
The ball is constantly accelerating to the right.
At least 3 measurements must be made.

<table>
<thead>
<tr>
<th>t(s)</th>
<th>x(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.82</td>
<td>2</td>
</tr>
<tr>
<td>0.95</td>
<td>3</td>
</tr>
</tbody>
</table>

From $\Delta x = v_0 t + \frac{1}{2} at^2$

\[\begin{align*}
0.5 - x_0 &= v_0 (0.57) + \frac{1}{2} a (0.57)^2 \\
2 - x_0 &= v_0 (0.82) + \frac{1}{2} a (0.82)^2 \\
3 - x_0 &= v_0 (0.95) + \frac{1}{2} a (0.95)^2
\end{align*} \tag{I, II, III} \]

\(\text{(III)} - \text{(I)} \Rightarrow 6 = v_0 + 0.695 a\)

\(\text{(III)} - \text{(II)} \Rightarrow 769 = v_0 + 0.885 a\)

\[a = 9 \text{ m/s}^2 \]

Then $v_0 = -0.26 \text{ m/s}$ and $x_0 = -0.8 \text{ m}$

\[x(t) = -0.8 \text{ m} - 0.26 \text{ m/s} (t) + \frac{1}{2} (9 \text{ m/s}^2) t^2 \]

Note: A student who views the script will get the answer $x(t) = -1.6 \text{ m} + 2 \text{ m/s} t + 3 \frac{9}{2} t^2$.

P.2.18 (Level 2)

Topic(s): Kinematics, Free-Fall
Answer: a) 5 m/s, b) 2.2m

P.2.19 (Level 3)

Topic(s): Kinematics, Free-Fall
Answer: 27.3 m
\[h_2 = 5.0 \text{ m (measuring at top of ball)} \]
\[t_2 = 1.15 \]
\[V_2 = 0 \]

Now, if \(V_0 \) is doubled.

From \[v^2 = V_0^2 + 2a\Delta y \]
\[0 = V_0^2 + 2a\Delta y_1 \]
\[0 = (2V_0)^2 + 2a\Delta y_2 \]

Combining

\[0 = 4(-2a\Delta y_1) + 2a\Delta y_2 \]
\[4\Delta y_1 = \Delta y_2 \]

goes 4x as high.

\[v = V_0 + at \]
\[0 = V_0 - g(1.15) \]
\[V_0 = 10.8 \text{ m/s} \]

\[\Delta h = V_0 t + \frac{1}{2}at^2 \]
\[= (10.8 \text{ m/s})(1.15) - \frac{1}{2}g(1.15)^2 \]
\[= 6.5 \text{ m} = h_1 - h_0 \]
\[h_0 = 1.3 \text{ m} \]

So \[\Delta h_{\text{ned}} = 6.5 \text{ m} \]
\[\Delta h_{\text{ned}} = 4(6.5 \text{ m}) = 26 \text{ m} = h_4 - h_0 \]
\[h_0 = 1.3 \text{ m} \]

\[h_0 = 87.3 \text{ m} \]
Chapter II.3: Two-Dimensional Kinematics

Illustrations

Illustration 3.1: Vector Decomposition
Topic(s): Vectors
Purpose: Introduction to vectors.
Suggested Use: Reading assignment or for in class use – have student predict how the various values will change when the vector is drug in a particular way. Then discuss discrepancies in students’ thinking.

Illustration 3.2: Motion on an Incline
Topic(s): Constant Acceleration 2-D, Graphical Representations of Motion
Purpose: To introduce motion on an inclined plane
Suggested Use: Reading assignment or use in class as concepts are discussed.

Illustration 3.3: The Direction of Velocity and Acceleration Vectors
Topic(s): Constant Acceleration 2-D
Purpose: To introduce 2-D kinematics.
Suggested Use: Reading assignment or for in-class use – have students predict and explain the vector before showing them. Then discuss discrepancies in students’ thinking.

Illustration 3.4: Projectile Motion
Topic(s): Projectile Motion, Graphical Representations of Motion
Purpose: To introduce projectile motion.
Suggested Use: This would make a great in-class demonstration to help students connect the x and y components of projectile motion. Could just show the Physlet in class and discuss or have students predict what the graphs and/or footprints will look like before viewing.

Illustration 3.5: Uniform Circular Motion and Acceleration
Topic(s): Uniform Circular Motion
Purpose: To introduce uniform circular motion
Suggested Use: Reading assignment or use in class as concepts are discussed.

Illustration 3.6: Circular and Non-Circular Motion
Topic(s): Uniform Circular Motion, Non-Uniform Circular Motion
Purpose: To show examples of non-uniform circular motion.
Suggested Use: Reading assignment or use in class as concepts are discussed.
Explorations

Exploration 3.1 – Addition of Displacement Vectors
Topic(s): Vectors

Exploration 3.2 – Run the Gauntlet, Controlling x, v, and a
Topic(s): 2-D motion

Exploration 3.3 – Acceleration of a Golf Ball That Rims the Hole
Topic(s): Constant Acceleration 2D

Exploration 3.4 – Space Probe with Constant Acceleration
Topic(s): Constant Acceleration 2D

Exploration 3.5 – Uphill and Downhill Projectile Motion
Topic(s): Projectile Motion

Exploration 3.6 – Uniform Circular Motion
Topic(s): Uniform Circular Motion

Problems

P.3.1 (Level 1)
Topic(s): Vectors
Answer: a) A=B=C>E=D, b) A=B=C=D>E, c) 0 units in x, 16 units in y

P.3.2 (Level 1)
Topic(s): Vectors
Answer: a) 15m in x, 10m in y, b) –10m in x, 12m in y, c) 5min x, 22m in y, d) it is the addition of the components

P.3.3 (Level 3)
Topic(s): 2D Acceleration, Kinematics
Answer: a) 1=3=5=6>2=4, b) 3=6>5>2>1=4, c) 3=6>2=5>4>1, d) 2.5 m for animations 1, 3, 5, and 6, 2m for animations 2, 4, e) a1 = -5 m/s^2, a2 = a5 = 0, a3 = a6 = 5m/s^2, a4 = -4 m/s^2
P.3.4 (Level 1)
Topic(s): Displacement, Velocity
Answer: Displacement, 1=2=3=4, Avg. Velocity 3>2>1=4

P.3.5 (Level 1)
Topic(s): Constant Acceleration 2D, Graphical Representations of Motion
Answer: c) –0.5 m/s, d) 0.3 m/s, e) 0.58 m/s

P.3.6 (Level 1)
Topic(s): Constant Acceleration 2D, Graphical Representations of Motion
Answer: a) 0 to 45 s, b) 45 s to 85s, c) 45s, d) 0, e) 0, f) –0.3 m/s, g) 0, h) –51 m, I) 10.05 m

P.3.7 (Level 2)
Topic(s): Projectile Motion
Answer: at x = 43m, y=28.2m, v = 17.9 m/s

min speed is at highest point

P.3.8 (Level 1)
Topic(s): Projectile Motion
Answer: Animation 2

P.3.9 (Level 1)
Topic(s): Projectile Motion
Answer: a) 59 degrees, b) vx = 10.3 m/s, vy = 17.1 m/s, c) 14.9 m, d) 1.75 s, e) 3.5 s

P.3.10 (Level 1)
Topic(s): Projectile Motion
Answer: VoCosθ = 12 m/s

P.3.11 (Level 2)
Topic(s): Projectile Motion
Answer: x = 0.78m

P.3.12 (Level 2)
Topic(s): 2D Motion, Graphical Representations of Motion
*Answer: a) 138 m/s^2, b) 1.5 m/s^2, c) 138 m/s^2, d) v is constant, a is zero, e) ay=0, ax = 0.09 m/s^2.
P.3.13 (Level 2)
Topic(s): Constant 2D Acceleration
Answer: a) constant, b) 0.88 m/s^2, c) x = -6.7 m, y = -3.9 m, e) 7.8 m

P.3.14 (Level 2)
Topic(s): Constant 2D Acceleration
Answer: a) 40 m/s, b) 28.3 m/s^2, d) x = -3100 m, y = 3890 m, v = 538 m/s, d) vy = 0 from t = 0 to t = 5s, vx = 0 at t = 7s

\[
\begin{align*}
\text{a)} & \quad v_x = \frac{40 \text{ m/s}}{5 \text{ s}} = 8 \text{ m/s} \\
\text{b)} & \quad \alpha_x = \frac{\Delta v_x}{\Delta t} = -\frac{40 \text{ m/s} - 40 \text{ m/s}}{10 \text{ s} - 5 \text{ s}} = -8 \text{ m/s}^2 \\
\text{c)} & \quad \alpha_y = \frac{\Delta v_y}{\Delta t} = \frac{100 \text{ m/s} - 0}{10 \text{ s} - 5 \text{ s}} = 20 \text{ m/s}^2 \\
\text{d)} & \quad \alpha = \sqrt{\alpha_x^2 + \alpha_y^2} = 22.3 \text{ m/s}^2
\end{align*}
\]

\[\text{c)} \quad \text{at } t = 5 \text{s, find position and velocity} \]
\[\text{at } t = 5 \text{s, middle of probe is at } x = 100 \text{ m}, y = -109 \text{ m}, \text{engines engage} \]
\[\Delta t = 5 \text{s} = 20 \text{s} \]
\[\begin{align*}
\Delta x &= v_x \Delta t + \frac{1}{2} a_x \Delta t^2 \\
&= 0 + \frac{1}{2}(20 \text{ m/s})(20 \text{ s}) = 400 \text{ m} \\
\Delta y &= v_y \Delta t + \frac{1}{2} a_y \Delta t^2 \\
&= (-20 \text{ m/s})(20 \text{ s}) + \frac{1}{2}(20 \text{ m/s})(20 \text{ s})^2 = 3890 \text{ m} \\
\end{align*}\]

\[\begin{align*}
\text{V}_x &= v_{x,0} + a_x \Delta t \\
&= 0 + 80 \text{ m/s} = 80 \text{ m/s} \\
\text{V}_y &= v_{y,0} + a_y \Delta t \\
&= -20 \text{ m/s} - 40 \text{ m/s} = -60 \text{ m/s} \\
\end{align*}\]

\[\begin{align*}
\text{v} &= \sqrt{v_x^2 + v_y^2} = 538 \text{ m/s} \\
\text{V}_{\text{tan}} &= \sqrt{v_y^2 + v_x^2} = 538 \text{ m/s} \\
\text{t} &= 2 \text{s after acceleration begins} = t = 7 \text{s for } v_y = 0
\end{align*}\]

P.3.15 (Level 1)
Topic(s): Uniform Circular Motion
Answer: a) right, b) up-left, c) 0 d) down, e) left, f) up-left

P.3.16 (Level 2)
Topic(s): Uniform Circular Motion
Answer: a) 0.7 m in x and -0.7 m in y, b) 1.6 m, c) 0.5 m/s, d) 0.8 m/s

P.3.17 (Level 1)
Topic(s): Uniform Circular Motion
Answer: a) 4s, b) 1.6 m/s, c) 2.5 m/s^2, d) velocity is left, acceleration is down
Chapter II.4: Newton’s Laws

Illustrations

Illustration 4.1: Newton’s First Law and Reference Frames
Topic(s): Projectile Motion, Relative Motion, Newton’s First Law
Purpose: Introduction to reference frames.
Suggested Use: Reading assignment or show in class as concepts are discussed.

Illustration 4.2: Free-Body Diagrams
Topic(s): Newton’s 2nd Law
Purpose: To introduce free-body diagrams.
Suggested Use: Reading Assignment

Illustration 4.3: Newton’s Second Law and Force
Topic(s): Newton’s 2nd Law, Graphical Representations of Motion
Purpose: To develop connections between force, velocity and acceleration.
Suggested Use: This is a good one for students to interact with as it makes connections between their actions, motion, and graphical representations.

Illustration 4.4: Mass on an Incline
Topic(s): Newton’s 2nd Law
Purpose: To demonstrate how forces on an object are related to mass and the angle of the incline the object is on.
Suggested Use: Reading assignment or in class demonstration. When used in class, have students predict the FBD or motion as variables are changed then view. Discussions based in the students’ predictions can then follow.

Illustration 4.5: Pull Your Wagons
Topic(s): Newton’s 2nd Law
Purpose: To introduce students to problem solving with Newton’s law
Suggested Use: Reading assignment or as a predict/explain exercise used in class.

Illustration 4.6: Newton’s Third Law, Contact Forces
Topic(s): Newton’s 3rd Law, Graphical Representations of Motion
Purpose: To introduce Newton’s 3rd law.
Suggested Use: Reading assignment or in class demonstration with students making predictions and then trying to explain the result.

Explorations

Exploration 4.1 – Vectors for a Box on an Incline
Topic(s): Newton’s 2nd Law
Answers: a) 10N at –180 degrees, b) 5 m/s^2

Exploration 4.2 – Change the 2 Forces Applied
Topic(s): Newton’s 2nd Law

Exploration 4.3 – Change the Force Applied to Get to the Goal
Topic(s): Newton’s 2nd Law

Exploration 4.4 – Set the Force on a Hockey Puck
Topic(s): Newton’s 2nd Law

Exploration 4.5 – Space Probe with Multiple Engines
Topic(s): Newton’s 2nd Law

Exploration 4.6 – Putted Golf Ball Breaks Toward the Hole
Topic(s): Newton’s 2nd Law
Answers: c) 0.05 N, d) 0.047 N, 0.038 N, 0.023 N

Exploration 4.7 – Atwood’s Machine
Topic(s): Newton’s 2nd Law
Answer: b) \(a = \frac{(Mg-mg)}{(M+m)} \)

Exploration 4.8 – Enter a Formula for the Force Applied
Topic(s): Newton’s 2nd Law

Problems

P.4.1 (Level 2)
Topic(s): Newton’s 2nd Law
Answer: Free-Body #2

\[\text{Free-Body #2 is correct} \]
P.4.2 (Level 1)
Topic(s): Newton’s 2nd Law
Answer: a) 0, b) 0, c) only that it is non-zero since there would be no thrust or drag if v=0., d) Net Force = 0 implies net a=0 not that v = 0.

P.4.3 (Level 2)
Topic(s): Newton’s 2nd Law
Answer: Animation doesn’t correctly depict Newton’s Laws.
a = 0.5 ms^-2 throughout

P.4.4 (Level 2)
Topic(s): Newton’s 2nd Law
Answer: F = 50 N from t=0 to t=5.6s and F = 60 N from t=5.6s to t=10s.
a = 0.5 m/s^2 throughout, F=ma

P.4.5 (Level 1)
Topic(s): Newton’s 2nd Law
Answer: a) 0.098 N downward, b) 0.6287 N upward, c) 0.7267 N upward, d) 0.002 N upward, v=0, e) 0.1 N upward, f) 0, g) 0.098 N upward, g) velocity is constant

P.4.6 (Level 2)
Topic(s): Newton’s 2nd Law
Answer: a) 0.044 N, b) 0
ax=0.76 m/s^2, ay=0.44 m/s^2, a=0.88 m/s^2, then use F=ma

P.4.7 (Level 1)
Topic(s): Newton’s 2nd Law
Answer: a) acceleration increases when force increases, b) acceleration decreases as angle increases, c) a=(Fcosθ)/m, d) mg - F sinθ

P.4.8 (Level 1)
Topic(s): Newton’s 2nd Law
Answer: a) normal force, c) N=mg+ma, d) a=-g

P.4.9 (Level 1)
Topic(s): Newton’s 2nd Law
Answer: a) 4>5=2=1>3>6, b) 4>5=2=1>3>6, c) a1=a2=a5=0 a4=4m/s^2 a6=-9.8 m/s^2, a3 = -4 m/s^2 d) T1=T2=T5=98N T3=58 N T4=138 N T6=0

P.4.10 (Level 3)
Topic(s): Newton’s 2nd Law
Answer: b) 41.2 N, c) 20.6 N, d) 30.9 N, e) 20.6 N
P.4.11 (Level 2)
Topic(s): Newton’s 2nd Law
Answer: a) 3.3 N, b) 0.5 kg
a = 3.3 m/s², T = M_cart X a then W_mass - T - M_mass X a

P.4.12 (Level 1)
Topic(s): Newton’s 2nd Law
Answer: Force on truck is equal and opposite to the force on the car.
P.4.13 (Level 1)

Topic(s): Newton’s 2nd Law

Answer: 2 and 4

a) $F_{\text{track}} = F_{\text{car}} = 0$ before since $a = 0$

$F_{\text{track}} = F_{\text{car}} = 0$ after since $a = 0$

During collision

\[
\alpha_{\text{track}} = \frac{\Delta V}{\Delta t} = \frac{500\text{ m/s} - 200\text{ m/s}}{0.05\text{ s}} = -3000\text{ m/s}^2
\]

\[
\alpha_{\text{car}} = \frac{\Delta V}{\Delta t} = \frac{500\text{ m/s} - (-200\text{ m/s})}{0.05\text{ s}} = 5000\text{ m/s}^2
\]

\[
F_T = M_T \alpha_T = (2000\text{ kg})(-3000\text{ m/s}^2)
\]

\[
= -6 \times 10^6 \text{ N}
\]

Force is to the left

b) $F_{\text{track}} = F_{\text{car}}$ by Newton’s 3rd Law

Force is right
Chapter II.5: Newton's Laws 2

Illustrations

Illustration 5.1: Static and Kinetic Friction
Topic(s): Friction
Purpose: Introduction to friction.
Suggested Use: Reading Assignment

Illustration 5.2: Uniform Circular Motion: Fc and ac
Topic(s): Uniform Circular Motion
Purpose: To introduce uniform circular motion
Suggested Use: Use as a visual aid in class to explain why there is an acceleration associated with circular motion. Would also be valuable as a reading assignment.

Illustration 5.3: The Ferris Wheel
Topic(s): Uniform Circular Motion
Purpose: To introduce uniform circular motion.
Suggested Use: Reading assignment

Illustration 5.4: Springs and Hooke's law
Topic(s): Springs
Purpose: To introduce springs and Hooke’s law.
Suggested Use: Reading assignment.

Illustration 5.5: Air Friction
Topic(s): Friction
Purpose: To introduce air resistance.
Suggested Use: Us as a visual aid in class when discussing the effect of air friction on motion. Have the students consider the situation and make predictions for the graphs and motion before viewing and discussing. Would also be valuable as a reading assignment.

Explorations

Exploration 5.1 – Circular Motion
Topic(s): Uniform Circular Motion

Exploration 5.2 – Force an Object around a Circle
Topic(s): Uniform Circular Motion

Exploration 5.3 – Spring Force
Topic(s): Springs
Answer(s): b) 0.34 kg, c) 1.8 m
Exploration 5.4 – Circular Motion and a Spring Force
Topic(s): Uniform Circular Motion, Springs

Exploration 5.5 – Enter a Formula for the Force
Topic(s): Friction

Exploration 5.6 – Air Friction
Topic(s): Friction

Exploration 5.7 – Enter a Formula, \(F_x \) and \(F_y \), for the Force
Topic(s): Variable Forces

Problems

P.5.1 (Level 2)
Topic(s): Newton’s 2nd law, Friction
Answer: b) 0, c) 98 N, d) Book will slow down and come to a stop.

P.5.2 (Level 2)
Topic(s): Newton’s 2nd law, Friction
Answer: b) 0.8 N, c) 47 N

P.5.3 (Level 2)
Topic(s): Newton’s 2nd law, Friction
Answer: b) 0, c) 49 N

P.5.4 (Level 2)
Topic(s): Newton’s 2nd law, Friction
Answer: 0.15
a = 0 then 1.5 m/s\(^2\)

P.5.5 (Level 2)
Topic(s): Newton’s 2nd law, Friction
Answer: #2 is correct
P.5.6 (Level 2)

Topic(s): Newton’s 2nd law, Friction

Answer: b) $F_{\text{top}}=18\text{N}$, $F_{\text{bot}}=8\text{N}$, c) 26N

P.5.7 (Level 2)

Topic(s): Newton’s 2nd law, Friction

Answer: b) 0, c) 0.5

P.5.8 (Level 2)

Topic(s): Newton’s 2nd Law, Uniform Circular Motion

Answer: b) weight and tension, c) 14.8 m/s2, d) 1480 N

P.5.9 (Level 1)

Topic(s): Newton’s 2nd Law, Uniform Circular Motion

Answer: a) friction, b) blue

P.5.10 (Level 1)

Topic(s): Newton’s 2nd Law, Uniform Circular Motion

Answer: a) 1.5 m/s2, c) 0.15 N

P.5.11 (Level 1)

Topic(s): Newton’s 2nd Law, Uniform Circular Motion
Answer: a) 1.2 m/s^2, c) 0.13

P.5.12 (Level 1)
Topic(s): Springs
Answer: a) x = -9.9m to x = 8.1m, b) 13m, c) 6 N/m

P.5.13 (Level 1)
Topic(s): Springs
Answer: 1.5 N/m

P.5.14 (Level 2)
Topic(s): Springs, Non-Constant Forces
Answer: 15 N/m

\[F(t) = \begin{cases} \text{constant} & \text{for } 0 \leq t \leq T, \\ \text{linear} & \text{for } T < t < 2T. \end{cases} \]

\[\text{NO - Would need to know too many points or too many times to be effective.} \]
Chapter II.6: Work

Illustrations

Illustration 6.1: Dot Products

Topic(s): Dot Product
Purpose: Introduction to the dot product.
Suggested Use: Reading Assignment

Illustration 6.2: Constant Forces

Topic(s): Friction, Newton’s 2nd Law, Work-Energy Theorem
Purpose: To introduce concepts related to work.
Suggested Use: Reading assignment

Illustration 6.3: Force and Displacement

Topic(s): Springs, Non-Constant Forces, Work
Purpose: To introduce work for non-constant forces.
Suggested Use: Reading assignment or in class discussions to help students connect the concepts of integration and area calculation to work.

Illustration 6.4: Springs

Topic(s): Springs
Purpose: To introduce springs and their relation to work.
Suggested Use: Reading assignment or as with Illustration 6.3, used in class to help students visually connected mathematics with the physical concepts.

Illustration 6.5: Circular Motion

Topic(s): Uniform Circular Motion, Work
Purpose: To introduce concepts related to circular motion and work.
Suggested Use: Reading assignment or to support an in-class discussion of work. In addition to taking students through the ideas in the written portion of the illustration, it would also be interesting to have students predict and explain the motion for various values of the initial velocity. For example, what will happen over a long period of time if the initial velocity is such that the bob never makes it to the top? What if the velocity is large enough that it gets to the top with some velocity remaining?

Explorations

Exploration 6.1 – An Operational Definition of Work

Topic(s): Work

Exploration 6.2 – The Two-block Push

Topic(s): Work
Exploration 6.3 – The Gravitational Force and Work
Topic(s): Work

Exploration 6.4 – Change the Direction of the Force Applied
Topic(s): Work

Exploration 6.5 – Circular Motion and Work
Topic(s): Work and Uniform Circular Motion

Exploration 6.6 – Forces, Path Integrals, and Work
Topic(s): Work

Problems

P.6.1 (Level 2)
Topic(s): Work, Energy
Answer: a) 1.6×10^{-3} J, b) 0.16 N

![Image](https://via.placeholder.com/150)

P.6.2 (Level 2)
Topic(s): Work, Energy
Answer: a) -16 J, b) 20 N

P.6.3 (Level 1)
Topic(s): Work, Energy
Answer: a) 0, b) 49 N

P.6.4 (Level 1)
Topic(s): work
Answer: $1=2=3=4$ for all

P.6.5 (Level 1)
Topic(s): Work, Newton’s 2nd Law
Answer: a) 0, b) 0, c) 0, d) 17 J

P.6.6 (Level 2)
Topic(s): Work-Energy
Answer: 5.5 m/s^2
P.6.7 (Level 1)
Topic(s): Work
Answer: a) +, b) 0, c) 0, d) -, e) 0

P.6.8 (Level 2)
Topic(s): Work - Energy
Answer: a) 59 J, b) –59 J, c) 0

P.6.9 (Level 2)
Topic(s): Work - Energy
Answer:
\[
\begin{align*}
&\text{a) } \frac{\text{mg}}{L} \sin \theta - \frac{\text{mg}}{L} \cdot L = -\text{mg} \cdot \Delta y = (12\text{N})(9.8\text{m/s}^2)(0.53\text{m}) = 60.3\text{J} \\
&\text{b) } W_f = W_i = 60.3\text{J} \\
&\text{c) } W_{tot} = 0 = W_f + W_i = \Delta KE
\end{align*}
\]

P.6.10 (Level 2)
Topic(s): Work
Answer: a) 6>3=5=0>2=4, b) 4>2>0=5=6>1>3, c) 6>3=4>1>2=5=0, d) W1=W3=196J, W2=W4=-196J, W5=0, W6=480J, e) W1=196J, W2=196J, W3=116J, W4=276J, W5=W6=0, f) W1=W2=W5=0, W3=W4=80J, W6=480J

P.6.11 (Level 2)
Topic(s): Newton’s 2nd Law, Work
Answer: a) –3.3J, b) 3.9J, c) 3.3J, d) 0, e) 0, f) 3.9J, g) 3.9J

P.6.12 (Level 1)
Topic(s): Springs, Work
Answer: Graph 3

P.6.13 (Level 1, uses calculus)
Topic(s): Springs, Work
Answer: a) 0, b) 0, c) 0, d) 25 N, e) 25 N, f) The force is not constant, it varies with displacement.

P.6.14 (Level 2)
Topic(s): Springs, Work
Answer: 4.9 N/m
Chapter II.7: Energy

Illustrations

Illustration 7.1: Choice of System
Topic(s): Energy Conservation
Purpose: Introduction to energy conservation and choice of system.
Suggested Use: Reading assignment or in class when discussing energy. This illustration provides a good way to introduce the energy bar representation to students.

Illustration 7.2: Representations of Energy
Topic(s): Energy Conservation
Purpose: Introduction to energy bar graphs.
Suggested Use: Reading assignment or as an aid for in-class discussions. As with Illustration 7.1, this is a good way to acclimate students to the energy bar representation.

Illustration 7.3: Potential Energy Diagrams
Topic(s): Energy Conservation
Purpose: Introduction to energy diagrams.
Suggested Use: Reading assignment or as another opportunity to discuss representations of energy. In addition to following the ideas presented in the narrative of the illustration, you could first show students the Physlet and then ask them what is represented by each bar/line/color.

Illustration 7.4: External Forces and Energy
Topic(s): Energy Conservation
Purpose: To changes in energy with external forces.
Suggested Use: Reading assignment. This is an illustration that students need to interact with individually to really benefit.

Illustration 7.5: A Block on an Incline
Topic(s): Energy Conservation
Purpose: To introduce problem solving using energy conservation.
Suggested Use: Reading assignment or in class demonstration following narrative of the illustration. Also, would be beneficial to show students the Physlet first and ask them what is represented by each arrow/color/bar.

Explorations

Exploration 7.1 – Push a Cart Around
Topic(s): Energy Conservation
Exploration 7.2 – Choice of Zero for Potential Energy
Topic(s): Energy Conservation

Exploration 7.3 – Elastic Collision
Topic(s): Energy Conservation

Exploration 7.4 – A Ball Hits a Mass Attached to a Spring
Topic(s): Energy Conservation

Exploration 7.5 – Drag the Ball to Determine PE(x)
Topic(s): Energy Conservation

Exploration 7.6 – Different Interactions
Topic(s): Energy Conservation

Exploration 7.7 – Exploring Potential Energy Functions
Topic(s): Energy Conservation

Problems

P.7.1 (Level 1)
Topic(s): Energy Conservation
Answer: 5.4 m/s

P.7.2 (Level 2)
Topic(s): Energy Conservation
Answer: a) 59 J, b) -59 J, c) 0

P.7.3 (Level 2)
Topic(s): Energy Conservation
Answer: a) -59 J, b) 59 J, c) 0

P.7.4 (Level 2)
Topic(s): Energy Conservation
Answer: a) -59 J, b) 59 J, c) 0

P.7.5 (Level 2)
Topic(s): Energy Conservation, Newton’s 2nd Law
Answer: a) 2=4>5>1=3>6, b) 4>2>5=6>3>1, c) 6>3=4>1=2=5, d) Anim1=Anim3=-196 J, Anim2=Anim4=196 J, Anim5=0, Anim6=-490 J, e) Anim1=-196 J, anim2=196 J, anim5=anim6=0, anim3=-116 J, anim4=276 J, f) anim1=anim2=anim5=0, anim3=anim4=80 J, anim6=490 J
P.7.6 (Level 2)

Topic(s): Energy Conservation, Work, Newton’s 2nd Law

Answer: a) –3.27J, b) –3.95J, c) 3.27J, d) 0, e) 0, f) 0, g) –3.95J, h) 3.95J

P.7.7 (Level 2)

Topic(s): Energy Conservation

Answer: a) red, green, blue, b) blue, red, green, c) 14.8 m/s for all

P.7.8 (Level 2)

Topic(s): Energy Conservation

Answer: a) 5.5 m/s, b) Ef = 0.83 Eo, c) 0.9

P.7.9 (Level 2)

Topic(s): Center of Mass

Answer: a) 0, b) 1.25 kg, c) 8.1 J, d) –8.1 J
P.7.10 (Level 1)

Topic(s):

Answer:

a) 5×10^{-4} J, b) 0, 1.8×10^{-4} J, 3.2×10^{-4} J, 4.2×10^{-4} J, 4.8×10^{-4} J, 5×10^{-4} J

P.7.11 (Level 1)

Topic(s): Energy Conservation, 1-D Collisions

Answer:

a) Interval 1 = ball moves at constant speed right, interval 2 = ball hits spring, interval 3 = ball is stationary, spring recoils, interval 4 = spring hits ball, interval 5 = ball moves left at constant speed. B) energy is always conserved

P.7.12 (Level 1)

Topic(s): Energy Conservation, 1-D Collisions

Answer:

a) energy is always conserved, b) 90%
Chapter II.8: Momentum

Illustrations

Illustration 8.1: Force and Impulse
Topic(s): Momentum
Purpose: Connecting force with momentum.
Suggested Use: Reading assignment or as an in-class demonstration.

Illustration 8.2: The Difference between Impulse and Work
Topic(s): Momentum, Work
Purpose: To connect impulse and work.
Suggested Use: Reading assignment or as an in-class demonstration.

Illustration 8.3: Hard and Soft Collisions and the Third Law
Topic(s): Momentum, 1-D Collisions
Purpose: To connect momentum conservation to the 3rd law.
Suggested Use: Reading assignment or as an in-class demonstration when discussing types of collisions.

Illustration 8.4: Relative Velocity in Collisions
Topic(s): Momentum, 1-D Collisions
Purpose: Discussion of collisions.
Suggested Use: Reading assignment or as an in-class demonstration to show that the relative velocity between two objects in a collision is the same before and after the collision.

Illustration 8.5: The Zero-momentum Frame
Topic(s): Momentum, 1-D Collisions
Purpose: To introduce reference frames with momentum.
Suggested Use: Reading assignment or as an in-class demonstration when transitioning from momentum to center of mass discussions.

Illustration 8.6: Microscopic View of a Collision
Topic(s): Momentum, 1-D Collisions
Purpose: To show collisions on a molecular level.
Suggested Use: Reading assignment or in-class demonstration.

Illustration 8.7: Center of Mass and Gravity
Topic(s): Center of Mass
Purpose: To introduce center of mass.
Suggested Use: Reading assignment.
Illustration 8.8: Moving Objects and Center of Mass

Topic(s): Center of Mass
Purpose: To center of mass in moving systems.
Suggested Use: Reading assignment.

Explorations

Exploration 8.1 – Understanding Conservation Laws
Topic(s): Conservation Laws in General

Exploration 8.2 – An Elastic Collision
Topic(s): Momentum, 1-D Collisions

Exploration 8.3 – An Inelastic Collision with Unknown Masses
Topic(s): Momentum, 1-D Collisions

Exploration 8.4 – Elastic and Inelastic Collisions and Δp
Topic(s): Momentum, 1-D Collisions

Exploration 8.5 – 2 and 3 Ball Collisions
Topic(s): Momentum, 1-D Collisions

Exploration 8.6 – An Explosive Collision
Topic(s): Momentum, 1-D Collisions

Exploration 8.7 – A Bouncing Ball
Topic(s): Momentum, 1-D Collisions, Energy

Problems

P.8.1 (Level 1)
Topic(s): Momentum
Answer: a) 12 kg-m/s, b) yes, c) not, d) yes, e) no

P.8.2 (Level 1)
Topic(s): Momentum, 1-D Collisions
Answer: a) ball, b) flower pot, c) less

P.8.3 (Level 1)
Topic(s): Momentum, 1-D Collisions
Answer: a) KE is conserved in bottom cart, b) top, c) no, d) KE depends on v^2 and is therefore independent of direction. Momentum is a vector and will change when direction changes.
P.8.4 (Level 1)
Topic(s): Momentum, 1-D Collisions
Answer: 1.04 kg

P.8.5 (Level 1)
Topic(s): Momentum, 1-D Collisions
Answer: 1401 kg

P.8.6 (Level 1)
Topic(s): Momentum, 1-D Collisions, Energy Conservation
Answer: 1, 2, and 3

P.8.7 (Level 1)
Topic(s): Momentum, 1-D Collisions, Energy Conservation
Answer: E and p conserved for all

P.8.8 (Level 1)
Topic(s): Momentum, 1-D Collisions, Energy Conservation
Answer: a) –1.35 kg-m/s, b) 1.35 kg-m/s, c) 0, d) 1.7 J

P.8.9 (Level 2)
Topic(s): Momentum, 1-D Collisions, Energy Conservation
Answer: yes
From momentum conservation mblue/mred=2

P.8.10 (Level 1)
Topic(s): Momentum, 1-D Collisions, Energy Conservation
Answer: Inelastic

P.8.11 (Level 2)
Topic(s): Momentum, 1-D Collisions, Energy Conservation
Answer: a) equal for all values of m since momentum is always conserved, b) equal when masses are equal, ay > ab when my > mb, ay< ab when my < mb because of Newton’s 3rd law which leads to ay = (mb/my) ab

P.8.12 (Level 1)
Topic(s): Momentum, 2-D Collisions
Answer: In terms of magnitudes …
a) poblue1=pogreen1=poblu2=pogreen2=pogreen3=pogreen4=pobue5=14.14 kg m/s, poblue3=0, poblue4=28.28 kg m/s, pogreen5=141.4 kg m/s, b) pfblue1=pfgreen1=pfblue2=pfgreen2=pfblue3=14.14 kg m/s, pfgreen3=0, pfblue4=21.08 kg m/s, pfgreen4=19.44 kg m/s, pfblue5=28.2 kg m/s, pfgreen5=118.5 kg m/s, c) mom is conserved for all.
P.8.13 (Level 2)

Topic(s): Center of Mass

Answer: 0.5 m

P.8.14 (Level 2)

Topic(s): Center of Mass

Answer: a) 3, b) –0.3 m, c) \(\Delta x_{\text{green}} = 0.3\) m, \(\Delta x_{\text{red}} = 0.9\) m

\[
\begin{align*}
a) \quad X_{\text{cm}} &= \text{constant} \Rightarrow X_{\text{cm}(t=0)} = X_{\text{cm}(t=0.16)} \\
&= \frac{m_g(-0.6) + m_a(0.6)}{m_g + m_a} = \frac{m_g(0.3) + m_a(0.9)}{m_g + m_a} \\
&= 0.1 m_g = 0.299 m_a \\
m_g &= \frac{3}{4} m_a \\
b) \quad X_{\text{cm}(t=0)} &= \frac{-0.6 m_g + 0.6 m_a}{m_g + m_a} = \frac{-0.6(3m_a) + 0.6 m_e}{3m_e + m_e} = -1.8 + 0.6 = -0.3 m \\
c) \quad |\Delta x_{\text{green}}| &= 0.6 \cdot 0.3 = 0.3 m \\
|\Delta x_{\text{red}}| &= 0.6 + 0.3 = 0.9 m
\]
Chapter II.9: Reference Frames

Illustrations

Illustration 9.1: Newton's First Law and Reference Frames
Topic(s): Reference Frames, Newton’s 1st Law
Purpose: Introduction to reference frames.
Suggested Use: Reading assignment or to direct an in-class discussion. The narrative in the illustration provides leading questions to direct the student discussion.

Illustration 9.2: Reference Frames
Topic(s): Reference Frames
Purpose: Introduction to reference frames.
Suggested Use: Reading assignment or to lead students in a discussion of reference frames and measurements. There are several problems that are similar to this illustration so discussing it would probably help students to interpret the assigned problems.

Illustration 9.3: The Zero-momentum Frame
Topic(s): Momentum, Reference Frames, 1-D Collisions
Purpose: To connect momentum conservation and reference frames.
Suggested Use: Reading assignment or as an in-class demonstration.

Illustration 9.4: Rotating Reference Frames
Topic(s): Uniform Circular Motion, Reference Frames
Purpose: To connect reference frame considerations with circular motion.
Suggested Use: Reading assignment or as an in-class aid for discussion.

Explorations

Exploration 9.1 – Compare Momentum in Different Frames
Topic(s): Reference Frames, Momentum, 1-D Collisions

Exploration 9.2 – Compare Energy in Different Frames
Topic(s): Momentum, 1-D Collisions, Energy, Reference Frames

Exploration 9.3 – Compare Relative Motion in Different Frames
Topic(s): Reference Frames

Exploration 9.4 – Compare Motion in Accelerating Frames
Topic(s): Momentum, 1-D Collisions, Energy, Reference Frames
Exploration 9.5 – Two Airplanes with Different Land Speeds

Topic(s): Reference Frames

Problems

P.9.1 (Level 1)

Topic(s): Reference Frames

Answer: \(-20\text{ m/s}\)

P.9.2 (Level 1)

Topic(s): Reference Frames

Answer: a) 3.6 m/s, b) 3.9 m/s, c) 21 degrees

P.9.3 (Level 2)

Topic(s): Reference Frames

Answer: a) 2 measures star to be accelerating, 1 is in an inertial frame, b) \(x_{\text{me}} = x_1 - 2t\)

P.9.4 (Level 2)

Topic(s): Reference Frames

Answer: a) 7 m/s, b) \(x_2 = x_1 - 7t\)

P.9.5 (Level 2)

Topic(s): Reference Frames

Answer: \(\text{anim}1 = 0, \text{anim}2 = 0.24 \text{ m/s}, \text{anim}3 = -0.55 \text{ m/s}\)
P.9.6 (Level 2)
Topic(s): Reference Frames
Answer: \(x_g = \frac{1}{2} (-3 \text{m/s}^2) t^2 \)

P.9.7 (Level 1)
Topic(s): Reference Frames
Answer: a) anim1 (red=8m/s, green= -8m/s), anim2 (red= 8 m/s, green = -4m/s), anim3 (red=0, green = -6m/s), b) anim1 = 16 m/s, anim2 = 12 m/s, anim3 = 6 m/s, c) no, d) anim1 = 8m/s, anim2 = 8m/s, anim3 = 0, e) anim1 = -8m/s, anim2 = -4 m/s, anim3 = -6m/s

P.9.8 (Level 3)
Topic(s): Reference Frames
Answer:

```latex
\begin{align*}
\text{a) Animation 1} &= \text{yes} = \text{Animation 3} \\
\text{Animation 2} &= \text{No} \\
\text{b) Fit to} \quad x_{\text{her}} &= x_{\text{me}} + v_{\text{rel}} + \frac{1}{2} a_{\text{rel}} t^2 \\
&= 0, \quad v_{\text{rel}} = -2 m/s \\
&= x_{\text{her}} = x_{\text{me}} - 2t \\
&= v_{\text{her}} = v_{\text{me}} - 2 \\
\text{c) } v &= v_0 + at \\
-1 m/s &= 3 m/s + a(3s) \\
&= a_{\text{rel}} = -1 m/s^2 \\
&= x_{\text{her}} = x_{\text{me}} = \frac{1}{2} t^2 \\
&= v_{\text{her}} = v_{\text{me}} - t \\
\text{e) } a_{\text{rel}} &= 0 \text{ since } a_{\text{her}} - a_{\text{me}} = 1 m/s^2 \\
&= x_{\text{her}} = x_{\text{me}} + v_{\text{rel}} t \\
&= x_{\text{her}} = x_{\text{me}} + (-1 -(-3))t \\
&= x_{\text{her}} = x_{\text{me}} + t \\
\end{align*}
```
P.9.9 (Level 3)

Topic(s): Reference Frames

Answer: 0.16
Chapter II.10: Rotations about a Fixed Axis

Illustrations

Illustration 10.1: Coordinates for Circular Motion

Topic(s): Rotational Kinematics
Purpose: To introduce circular motion.
Suggested Use: Reading Assignment

Illustration 10.2: Motion about a Fixed Axis

Topic(s): Angular Kinematics
Purpose: To connect angular and linear quantities.
Suggested Use: Reading assignment

Illustration 10.3: Moment of Inertia, Rotational Energy, and Angular Momentum

Topic(s): Rotational Newton’s Laws, Rotational Energy, Rotational Momentum
Purpose: To discuss moment of inertia, rotational energy, and angular momentum.
Suggested Use: Reading assignment

Explorations

Exploration 10.1 – Constant Angular Velocity Equation

Topic(s): Rotational Kinematics

Exploration 10.2 – Constant Angular Acceleration Equation

Topic(s): Rotational Kinematics

Exploration 10.3 – Torque and Moment of Inertia

Topic(s): Rotational Newton’s Laws

Exploration 10.4 – Torque on Pulley Due to the Tension of Two Strings

Topic(s): Rotational Newton’s Laws

Problems

P.10.1 (Level 1)

Topic(s): Rotational Kinematics
Answer: 2.1 rad
P.10.2 (Level 1)

Topic(s): Rotational Kinematics

Answer: a) 5.9 m/s, velocity is tangent to the merry-go-round, b) 4.7 rad/s, velocity is counter-clock-wise

P.10.3 (Level 1)

Topic(s): Rotational Kinematics

Answer: a) the speeds are equal, b) 4.7 rad/s

P.10.4 (Level 1)

Topic(s): Rotational Kinematics

Answer: -197 rad/s^2

P.10.5 (Level 2)

Topic(s): Rotational Kinematics

Answer: 12.5 m/s^2

P.10.6 (Level 2)

Topic(s): Rotational Kinematics

Answer: -6 rad/s^2

P.10.7 (Level 2)

Topic(s): Rotational Kinematics, Rotational Newton’s Laws

Answer: -1.35 N-m

P.10.8 (Level 1)

Topic(s): Rotational Kinematics

Answer: Animation 1

P.10.9 (Level 2)

Topic(s): Rotational Energy

Answer: 0.01

P.10.10 (Level 2)

Topic(s): Rotational Energy, Rotational Newton’s Laws

Answer: a) 2, b) 1, c) 1, d) 1, e) T = m(g-a), f) torque = Rm(g-a), g) I = R^2 T/a

P.10.11 (Level 2)

Topic(s): Rotational Energy, Rotational Newton’s Laws
Answer: a) 3.1 m/s^2, b) 3.4 N for tension in pulley to hanging mass, 3.1 N in cart to pulley, c) 0.2 kg, d) 2.4 x 10^{-4} kg-m^2

\[a) \quad \alpha = \frac{\Delta v}{\Delta t} = \frac{2.5 m/s}{0.8 s} = 3.1 m/s^2 \]
\[b) \quad mg - T_1 = ma \]
\[0.5g - T_1 = 0.5(3.1) \quad T_{\text{pulley to hanging mass}} = 3.4 N \]
\[T_2 = ma = (1 kg)(3.1 m/s^2) = T_{\text{cart to pulley}} = 3.1 N \]
\[c) \quad 2\theta = I\alpha \]
\[r (T_1 - T_2) = \frac{1}{2} mr^2 \alpha = \frac{1}{2} mr^2 a/r = \frac{1}{2} mr a \Rightarrow T_1 - T_2 = \frac{1}{2} ma \]
\[0.3N = \frac{1}{2} m_\rho (3.1 m/s^2) \]
\[m_\rho = 0.19 kg \]
\[d) \quad I = \frac{1}{2} mr^2 = \frac{1}{2}(0.2 kg)(0.05 m)^2 = 2.4 \times 10^{-4} kg \cdot m^2 \]
\[= 0.2 \frac{kg \cdot m^2}{s^2} \]

P.10.12 (Level 2)

Topic(s): Rotational Energy

Answer: 6.1 kg-m^2

P.10.13 (Level 2)

Topic(s): Rotational Energy

Answer: 0.9 kg

P.10.14 (Level 1)

Topic(s): Angular Momentum

Answer: L1 = L2 = L3 = L4 = 28 kg-m^2/s
Chapter II.11: General Rotations

Illustrations

Illustration 11.1: Cross Product
Topic(s): Cross Products
Purpose: Introduction to the cross product.
Suggested Use: Reading Assignment

Illustration 11.2: Rolling Motion
Topic(s): Rotational Motion
Purpose: To introduce rolling motion.
Suggested Use: Reading assignment or as an in-class visual aid.

Illustration 11.3: Translational and Rotational Kinetic Energy
Topic(s): Rotational Energy
Purpose: To introduce rotational energy.
Suggested Use: Reading assignment or as an in-class visual aid when introducing rotational kinetic energy. Ask students to predict the shape of the two graphs before viewing and discuss discrepancies. Also focus their attention on the question at the end of the illustration, “Why do you think that the energy vs. time graphs curve, while the energy vs. position graphs are straight lines?”

Illustration 11.4: Angular Momentum and Area
Topic(s): Rotational Momentum
Purpose: To introduce angular momentum as it relates to area.
Suggested Use: Reading assignment as an in-class visual aid. This is a great visual to explain how angular momentum works when an object is moving in a straight line.

Illustration 11.5: Conservation of Angular Momentum
Topic(s): Rotational Momentum
Purpose: To introduce conservation of angular momentum
Suggested Use: Reading assignment.

Explorations

Exploration 11.1 – Torque
Topic(s): Cross Products, Torque

Exploration 11.2 – Non-uniform Circular Motion
Topic(s): Torque, Circular Motion
Exploration 11.3 – Rolling down an Incline
Topic(s): Rotational Energy

Exploration 11.4 – Moment of Inertia and Angular Momentum
Topic(s): Rotational Newton’s Laws, Energy, and Momentum

Exploration 11.5 – Conservation of Angular Momentum
Topic(s): Angular Momentum

Problems

P.11.1 (Level 2)
Topic(s): Rotational Motion
Answer: 5.7 m/s

P.11.2 (Level 1)
Topic(s): Rotational Motion
Answer: Animation 2

P.11.3 (Level 2)
Topic(s): Rotational Energy
Answer: a) slides down the incline, b) could be any object
P.11.4 (Level 2)

Topic(s): Rotational Energy
Answer: Rolls, Disk
a = 3 \text{ m/s}^2, v \text{ at bottom} = 3 \text{ m/s}, some energy goes into rotation

P.11.5 (Level 2)

Topic(s): Rotational Energy, Torque, Rotational Kinematics
Answer: 15.7 N-m
Instructors Guide for *Physlet® Physics*
Anne J. Cox and Melissa H. Dancy

P.11.6 (Level 2)
Topic(s): Rotational Energy
Answer: **0.17 kg**

P.11.7 (Level 2)
Topic(s): Angular Momentum
Answer: **76 kg·m²/s for all**

P.11.8 (Level 1)
Topic(s): Conservation of Angular Momentum
Answer: **54 kg**

P.11.9 (Level 1)
Topic(s): Angular Momentum, Rotational Energy
Answer: **KE and Angular Momentum**

P.11.10 (Level 2)
Topic(s): Angular Momentum
Answer: **5 kg·m²/s before and after for all animations**
Chapter II.12: Gravitation

Illustrations

Illustration 12.1: Projectile and Satellite Orbits

Topic(s): Gravitation

Purpose: Introduction to orbits.

Suggested Use: This is a great visual aid to help students understand orbiting bodies. It can be used to show that an orbit body is always “falling” under the influence of gravity and the velocity dependence of an orbit.

Illustration 12.2: Orbits and Planetary Mass

Topic(s): Gravitation

Purpose: Discussion of orbiting bodies.

Suggested Use: Reading assignment

Illustration 12.3: Circular and Non-Circular Motion

Topic(s): Circular Motion

Purpose: To discuss circular motion and orbits.

Suggested Use: Reading assignment

Illustration 12.4: Angular Momentum and Area

Topic(s): Angular Momentum

Purpose: To discuss angular momentum and its relationship to orbiting bodies.

Suggested Use: Reading assignment or as an in-class visual to connect angular momentum to the area swept out.

Illustration 12.5: Kepler’s Second Law

Topic(s): Kepler’s Laws

Purpose: To introduce Kepler’s 2nd Law.

Suggested Use: Reading assignment.

Illustration 12.6: Heliocentric vs. Geocentric

Topic(s): Circular Motion

Purpose: To discuss reference frames and circular motion.

Suggested Use: This illustration provides a great visualization of the difference perspective can make on the appearance of an orbit. As students view the animation they can be lead into a discussion of heliocentric vs. geocentric orientations and the effect orientations would have had on the world.
Explorations

Exploration 12.1 – Different x_o or v_o for Planetary Orbits
Topic(s): Uniform Circular Motion

Exploration 12.2 – Set Both x_o and v_o for Planetary Orbits
Topic(s): Kepler’s Laws

Exploration 12.3 – Properties of Elliptical Orbits
Topic(s): Kepler’s Laws

Exploration 12.4 – Angular Momentum and Energy
Topic(s): Angular Momentum, Kepler’s Laws, Energy

Problems

P.12.1 (Level 1)
Topic(s): Newton’s Law of Gravitation
Answer: a) Animation 3, b) 10 kg

P.12.2 (Level 2)
Topic(s): Newton’s Law of Gravitation, Circular Motion
Answer: 3.4×10^{15} kg

P.12.3 (Level 2)
Topic(s): Newton’s Law of Gravitation, Circular Motion
Answer: a) 0, b) $G M_p \left(\frac{M_s}{R^2} + \frac{M_p}{(2R)^2} \right) = M_p \frac{4\pi^2}{T^2} R$
where R is the distance from a planet to the star, c) 2.4×10^{25} kg

P.12.4 (Level 2)
Topic(s): Kepler’s Laws
Answer: a) 1.5×10^{23} kg, b) 2.5×10^6 km

P.12.5 (Level 2)
Topic(s): Kepler’s Laws, Angular Momentum, Energy Conservation
Answer: a) perhaps, b) if the system is only the planet and the star then the orbit is not physical as energy and angular momentum are not conserved, however, the motion could be explained if there were another mass nearby.

P.12.6 (Level 2)
Topic(s): Kepler’s Laws
Answer: Red does not have the same T^2/R^3 ratio as the others
P.12.7 (Level 2)

Topic(s): Kepler’s Laws, Circular Motion

Answer: $2.5 \times 10^3 \text{ m/s}$

P.12.8 (Level 2)

Topic(s): Kepler’s Laws

Answer: $9 \times 10^{31} \text{ kg}$

P.12.9 (Level 2)

Topic(s): Reference Frames

Answer: 6 m/s^2

P.12.10 (Level 2 - Calculus)

Topic(s): Gravitation

Answer: Animation 4
Chapter II.13: Statics

Illustrations

Illustration 13.1: Equilibrium on a Ramp
Topic(s): Normal Force, Distributed Load
Purpose: Identify the conditions for tipping for a block in equilibrium on a ramp.
Suggested Use: Demonstration in class when solving the problem of a tipping block on a ramp or when discussing “where the normal force acts” of a ramp on a block.

Illustration 13.2: Center of Mass and Gravity
Topic(s): Center of Mass, Center of Gravity
Purpose: To introduce the concept of center of mass.
Suggested Use: To demonstrate that the ratio of the distances (from each particle to the center of mass) for a two-particle system is proportional to the ratio of the masses of the particles.

Illustration 13.3: Force and Torque in Equilibrium
Topic(s): Conditions of Equilibrium
Purpose: To find the force and torque needed for an object to be in equilibrium.
Suggested Use: Reading assignment to introduce students to the conditions of equilibrium; although the correct answer can be obtained using trial and error, follow-up questions and exercises can be used to verify that they can calculate the correct answer as well.

Illustration 13.4: The Diving Board Problem
Topic(s): Conditions of Equilibrium
Purpose: To help students visualize how the forces on a diving board depend on the location of the load on the board.
Suggested Use: An exercise to be performed before doing the typical “diving board problem” where students calculate the forces on a diving board when a person stands on the end.

Explorations

Exploration 13.1 – Balance a Mobile
Topic(s): Torque, Newton’s Laws

Exploration 13.2 – Static Friction on a Horizontal Beam
Topic(s): Torque, Newton’s Laws

Exploration 13.3 – Distributed Load
Topic(s): Torque, Newton’s Laws
Exploration 13.4 – The Stacking of Bricks

Topic(s): Torque, Newton’s Laws, Center of Mass

Problems

P.13.1 (Level 2)

Topic(s): Newton’s Laws, Torque

Answer: a) 14°, b) 0.25

P.13.2 (Level 2)

Topic(s): Newton’s Laws, Torque

Answer: a) $T_{\text{right}} = 6.3 \text{ N}$, $T_{\text{left}} = 18 \text{ N}$, b) right = 13 N, left = 21 N

P.13.3 (Level 1)

Topic(s): Newton’s Laws, Torque, Center of Mass

Answer: a) 8054 N upward, b) 1.9 m from left axle

P.13.4 (Level 2)

Topic(s): Newton’s Laws, Torque

Answer: a) 33 N, b) 0.34, c) attach the rope lower on the box

P.13.5 (Level 3)

Topic(s): Newton’s Laws, Torque

Answer: a) 3.3 N, b) 6.6 N in x and 3.9 N in y

P.13.6 (Level 2)

Topic(s): Newton’s Laws, Torque

Answer: a) 3.3, b) $F_y = \frac{W}{2}$, $F_x = 3.1 \text{ W}$, c) 0.16

P.13.7 (Level 2)

Topic(s): Newton’s Laws, Torque

Answer: a) 70 N left and 7.4 N up, b) 70 N right and 27 N down, c) on black rod (70 N right and 7.4 N up), on blue rod (70 N left and 7.4 N down)
P.13.8 (Level 2)
Topic(s): Newton’s Laws, Torque
Answer: a) 0.6 m to right of pivot, b) 1600 N, c) 2.9 m to left of pivot

P.13.9 (Level 3 - Calculus)
Topic(s): Newton’s Laws, Torque
Answer: a) 130 N, b) 163 N, c) $T = 78$ N, $F_{hy} = 35$ N, $F_{hx} = 47$ N

P.13.10 (Level 3)
Topic(s): Newton’s Laws, Torque, Center of Mass
Answer: a) 0.39 N-m clockwise, b) 1.96 N up, c) 2.39 N-m clockwise, 6.96 N up, d) apply the force further out along the lever, e) 16 N
P.13.11 (Level 2)

Topic(s): Newton’s Laws, Torque

Answer: a) 1.8 N, perpendicular to the ramp, located directly below the cm at $x = 0.23$ m and $y = -0.2$ m.

P.13.12 (Level 1)

Topic(s): Center of Mass

Answer: -0.7 m

P.13.13 (Level 2)

Topic(s): Torque, Newton’s Laws

Answer: 15.2 kg
Chapter II.14: Static Fluids

Illustrations

Illustration 14.1: Pressure in a Liquid

Topic(s): pressure

Purpose: To demonstrate the change in pressure as a function of depth.

Suggested Use: Have students calculate the pressure at various points in the water container and check their calculations with the animation. Some students will be surprised that to calculate the pressure at point A, the depth below the surface is 10-m (from the top of the water level) not 1-m, the distance to the container above it. Have students explain why this is so (if the pressure were much lower at point A, water would flow from the center part of the container to point A, equalizing the pressure). In the context of this illustration, have students explain why we use pressure instead of force in talking about fluids.

Illustration 14.2: Pascal’s Principle

Topic(s): pressure, Pascal’s principle, work

Purpose: To illustrate the use of Pascal’s principle in hydraulic lifts.

Suggested Use: Students can determine the work done (1.96J) and the amount the green block moves up in the animation (0.1 cm) to explain why you can’t see it on the animation. Can discuss why, when using lifts of any type, you must move the low force lever (or whatever the mechanism is) many times (this is, of course, true for any lift: not simply hydraulic ones). Note that the change in pressure with depth (for a change in depth of 10-cm) if the liquid is oil is negligible (pressure change is less than 100 Pa so it requires an increase of 0.1% in the force to compensate).

Illustration 14.3: Buoyant Force

Topic(s): Buoyant force

Purpose: To illustrate the cause of the buoyant force.

Suggested Use: Students can quickly realize that whatever the fraction of the water density the object is (e.g. 0.4 at the beginning), that is the percentage of the object submerged under the water as the object floats. To help them understand the buoyant force, though, it is useful to have them calculate the pressure differences between the top and the bottom of the floating block as suggested in the text of the Illustration to help make the connection between buoyancy and pressure as a function of depth. It is also easy for students to see that the water displaced (in this case into an adjoining container) is equal to the volume of the object under water and they can calculate the weight of this displaced water which gives them the easiest way to calculate the buoyant force. Finally, as they move a floating block, it will undergo simple harmonic motion (since the pressure, which determines the force on the object, varies linearly with depth creating a linear restoring force).
Illustration 14.4: Pumping Water up from a Well

Topic(s): pressure
Purpose: To illustrate an application of pressure as a function of depth.
Suggested Use: Many students think that suction systems (pumps, straws, etc.) do not have any limits (ask students how long a straw they could drink from) simply because they just “suck” the liquid out of something. Students do not realize that for the suction to work, it requires pressure down (from the atmosphere) on the liquid. By explicitly showing the pressure at the pump for deeper wells, students should be able to explain limits on pumping wells with suction pumps and predict the limits for a less dense or more dense liquid.

Explorations

Exploration 14.1
Topic(s): Buoyant force
a) 6.4x10^{-5} \text{ m}^3

Exploration 14.2
Topic(s): Buoyant force

Exploration 14.3
Topic(s): Buoyant force
a) 5\times10^5 \text{ N}
b) 5\times10^5 \text{ N}; 790 \text{ kg/m}^3
c) 80\% \text{ submerged}
j) \Delta p = 0.3\times10^5 \text{ so } F = 5 \times 10^5 \text{ N}

Problems

P.14.1 (Level 1)
Topic(s): pressure, Pascal’s principle
Answer:
 a) 7 \text{ N}. \ \text{diameter}_{\text{left}} = 0.02 \text{ m}; \ \text{diameter}_{\text{right}} = 0.15 \text{ m}; \ \text{p=F/A is same on both sides.}
b) 56 \text{ cm}. \ \text{Volume of liquid displaced equal.}

P.14.2 (Level 2)
Topic(s): pressure
Answer:
99960 \text{ Pa} = 750 \text{ Torr}. \ \text{p=gh. Density of mercury=13.6x10}^3 \text{ kg/m}^3 \text{ and height of mercury column is 75 cm (7.5 units) from surface.}
P.14.3 (Level 2)

Topic(s): Buoyant force

Answer:
1.7x10³ to 1.9 x10³ kg/m³. mg=19N, m=1.9-kg. Fb=10-N to 11-N so V=.001m³.

P.14.4 (Level 2)

Topic(s): Buoyant force

Answer:
a) 1.47 N, 0.9 N, 0.9 N. Voil_displacement=.05x.007x.2=7x10⁻⁵m³. Fb=gVoilρoil=65.
b) 90 Pa, 550 Pa

c) Δp is the same between top and bottom of the brick and that, not the pressure on the top (or bottom) alone, determines Fb.

P.14.5 (Level 2)

Topic(s): Buoyant force

Answer: 0.4-kg.

V in water=2.56x10⁻⁴m³ so weight of water displaced is 0.26-kg. “Boat” is 0.26-kg, but total volume is .08x.08x.105=6.72x10⁻⁴m³ so can support total of 0.67-kg.
P.14.6 (Level 2)
Topic(s): Buoyant force
Answer:
740 kg/m³. \(F_b = 2N = \rho g V \). Block \(V = 2.75 \times 10^{-4} \text{m}^3 \).

P.14.7 (Level 2)
Topic(s): Buoyant force
Answer:
Animation 1a & 1b: In the free-fall case, \(F_b = 0 \) on block because there is no pressure differential in because no weight of water to support (weight of water displaced is 0). In upward acceleration case, force diagram of block gives \(F_b > mg \) and the increased \(F_b \) comes from the increased apparent weight of the block—or increased pressure differential.

P.14.8 (Level 3)
Topic(s): Buoyant force
Answer:
0.9 kg/m³. \(a = 0.46 \text{m/s}^2 \). \(F_b - mg = ma \) and \(m = 300 + \rho_{\text{inside}} V \). \(V = (4/3)\pi r^3 = 905 \text{m}^3 \).
P.14.9 (Level 2)

Topic(s): Buoyant force
Answer:
Animation 2. (Mass of ice supported)\(\times g\) is equal to weight of water displaced by ice so when ice turns into water, takes same volume.

P.14.10 (Level 3)

Topic(s): Buoyant force
Answer:
Animation B. As oil is pumped out, do not have additional \(F_b\) due to displaced oil so block sinks some.
Chapter II.15: Fluids in Motion

Illustrations

Illustration 15.1: The Continuity Equation

Topic(s): continuity equation, Bernoulli’s equation

Purpose: To demonstrate the continuity equation for fluids.

Suggested Use: Have students calculate the volume flow rate in the wide and narrower regions. Use Bernoulli’s equation to explain why the pressure drops in the narrower region (see Exploration 15.1 for a further exploration of this.)

Illustration 15.2: Bernoulli’s law: Flow from Opening

Topic(s): Bernoulli’s equation, projectile motion

Purpose: To illustrate an application of Bernoulli’s equation to fluid flow from a reservoir.

Suggested Use: Change values of the height of the opening (leak) in the side of the container and have students predict and then explain why the velocity (and distance the water travels) changes the way it does.

Illustration 15.3: Ideal and Viscous Fluid Flow

Topic(s): viscosity, Bernoulli’s equation

Purpose: To illustrate the difference between ideal and viscous fluid flow.

Suggested Use: Students should quickly notice the difference between the two cases as well as the difference between the narrower tube and the wider tube when there is viscosity. As an extension, students can find the volume flow rate ($A v=0.23 \text{m}^3/\text{s}$) and use the equation to find that $\eta=1.23 \text{ Pa-s}$.

Illustration 15.4: Airplane lift

Topic(s): Bernoulli’s equation

Purpose: To illustrate an application of Bernoulli’s equation for airplane lift.

Suggested Use: Quantitatively compare the speeds of the air going above and below the wing. Students should be able to explain why the different speeds result in a lift and the direction of the lift force. It is worth noting, that for this example, the lift is quite small and students can come up with ways to improve the lift and discuss the trade-offs.

Explorations

Exploration 15.1

Topic(s): Bernoulli’s equation, continuity equation

a)-b) $v_{\text{wide}}=240 \text{mm/s}; v_{\text{w/2mm}}=360 \text{mm/s}; Av=\pi 7.3 \times 10^3 \text{mm}^3/\text{s}$ for both 2-mm

c)-e) $v_{\text{w/8mm}}=3225 \text{ mm/s}; Av$ same as above

f)-j) acceleration to right; F to right so p higher in wider region

l) $P+1/2 \rho v^2=25944 \text{Pa}$ (be sure to change to MKS units) for all regions
Exploration 15.2

Topic(s): Bernoulli’s equation, conservation of energy, continuity equation

a-f) Left: Volume=6.28m³; v=2m/s; Right: Volume=6.28m³; v=8m/s; Av=25.1m³/s for both.

g-m) \(P_{\text{left}}=2.7\times10^5 \text{Pa}, F_{\text{left}}=33.9\times10^5 \text{N}, W_{\text{left}}=16.96\times10^5 \text{J} \); \(P_{\text{right}}=1.52\times10^5 \text{Pa}, F_{\text{right}}=4.78\times10^5 \text{N}, W_{\text{right}}=9.55\times10^5 \text{J} \); \(\Delta W=7.4\times10^5 \text{J} \)

n-p) \(KE=\frac{1}{2}\rho Vv^2 \); \(\Delta KE=1.88\times10^5 \text{J} \); \(\Delta PE=\rho Vg\Delta h=5.54\times10^5 \text{J} \); Volume=Avt

Exploration 15.3

Topic(s): Bernoulli’s equation, projectile motion

a) \(y=5; \) \(P_{\text{bottom}}=1.5\times10^5 \text{Pa} \)

b) \(v=9.9\text{m/s} \)

c) falls 9m so \(t=1.36 \text{s}; x=vt=13.4 \text{ which agrees.} \)

Problems

P.15.1 (Level 1)

Topic(s): continuity equation

Answer:
Animation 3

P.15.2 (Level 2)

Topic(s): Bernoulli’s equation

Answer:
850 kg/m³. Can use pressure marker in vertical tube (v is the same there) so \(\Delta P=\rho g\Delta h \).

P.15.3 (Level 2)

Topic(s): Bernoulli’s equation, projectile motion

Answer:
4-m above the opening (y=11m). Water falls 11-m; \(t=1.5\text{s} \) so \(v_x=8.7 \text{ m/s} \). Use \(P+\rho gy+\frac{1}{2}\rho v^2=\text{constant} \) and pressure on top of water and outside is the same.
P.15.4 (Level 2)

Topic(s): Bernoulli’s equation, projectile motion

Answer:

1.5x10^5 Pa. Water falls 9-m; so t=1.36s so v_x=14.8m/s. Use P+mg+1/2ρv^2=constant.

P.15.5 (Level 2)

Topic(s): Bernoulli’s equation, projectile motion

Answer:

ρ=800 kg/m^3. For h=5m: Water falls 9-m; so t=1.36s so v_x=13.1m/s. Use P+pg+1/2ρv^2=constant.

P.15.6 (Level 2)

Topic(s): Bernoulli’s equation, continuity equation

Answer:

a) 28.4 m. In widest region (r=8m) v=1m/s, length=4m; middle region (r=5m) v=2.5m/s, length=10.2m; Volume constant and in narrowest region (r=3)

b) 7.1 m/s. Av=constant

c) 1.83x10^6 Pa. P +1/2ρv^2=constant

P.15.7 (Level 3)

Topic(s): Bernoulli’s equation, continuity equation

Answer:

Animation 3 is physically possible.
Animation 1: Bernoulli’s equation violated. Wide region (r=3) \(v=0.8\) m/s; Narrow (r=1.5) \(v=3.2\) m/s so continuity (Av=constant) holds. \(P\) in pipe equals the \(\rho gh\) in vertical tubes and \(\rho g(0.7)+\frac{1}{2}\rho(0.8)^2 \neq \rho g(0.5)+\frac{1}{2}\rho(3.2)^2\).

Animation 2: Continuity equation violated. Wide region (r=3) \(v=0.8\) m/s; Narrow (r=1.5) \(v=1.6\) m/s.

Animation C: Wide region (r=3) \(v=0.8\) m/s; Narrow (r=1.5) \(v=3.2\) m/s so continuity holds. \(P +\frac{1}{2}\rho v^2=\text{constant}\) is also true: \(\rho g(0.85)+\frac{1}{2}\rho(0.8)^2 = \rho g(0.35)+\frac{1}{2}\rho(3.2)^2\).

P.15.8 (Level 1)

Topic(s): Bernoulli’s equation
Answer:
a) The water flowing between the boats flows faster than the water between the
boat and back (narrower region). This means a lower pressure region between
boats so the boats move together.
b) same thing happens

P.15.9 (Level 3)
Topic(s): Bernoulli’s equation, projectile motion
Answer:
1.5x10³ Pa. Water maximum height of 0.141m so \(v_{\text{initial}, y} = 1.66\text{m/s}; t_{\text{up}} = 0.17\text{sec};\)
\(v_{\text{initial}, x} = 0.59\text{m/s}\) for an initial \(v = 1.76\text{m/s}\) out of pump: \(P_{\text{pump}} = P_{\text{atm}}\)
+1/2ρv²=P_{\text{atm}}+1.5x10³Pa.

P.15.10 (Level 2)
Topic(s): Bernoulli’s equation
Answer:
\(\eta = 1.1\text{ Pa-s.}\ v = 320\text{ cm/s} = 3.2\text{m/s}; R = 0.15\text{m}; A_v = \pi R^4 \Delta P / 8\eta L; \Delta P = \rho g \Delta h\) at the two
vertical tubes; \(L = 0.7\text{m}\) (distance between tubes).
Chapter II.16: Periodic Motion

Illustrations

Illustration 16.1: Representations of Simple Harmonic Motion

Topic(s): Periodic Motion
Purpose: Introduction periodic motion representations.
Suggested Use: This illustration visually connects three representations of SHM including showing how a mass on a turntable can be in SHM. It would be a great demonstration when introducing the topic to help students make conceptual connections.

Illustration 16.2: The Simple Pendulum and Spring Motion

Topic(s): Periodic Motion
Purpose: Introduction periodic motion representations.
Suggested Use: Reading assignment or used in-class when introducing SHM. Illustration is similar to Illustration 16.3.

Illustration 16.3: Energy and Simple Harmonic Motion

Topic(s): Periodic Motion, Energy
Purpose: To introduce energy considerations in periodic motion.
Suggested Use: This illustration is similar to Illustration 16.2. Good visual demonstration when introducing concepts.

Illustration 16.4: Forced and Damped Motion

Topic(s): Periodic Motion, Damping
Purpose: To discuss damping in periodic motion.
Suggested Use: Reading assignment.

Illustration 16.5: The Fourier Series, Qualitative Features

Topic(s): Periodic Motion, Fourier Series
Purpose: To introduce non sinusoidal periodic functions.
Suggested Use: Reading assignment or as an in-class visual when introducing Fourier Series.

Illustration 16.6: The Fourier Series, Quantitative Features

Topic(s): Periodic Motion, Fourier Series
Purpose: To introduce Fourier series.
Suggested Use: This is a good illustration for students to do themselves as it involves a bit of “play”. Would be good to assign as a reading assignment in preparation for a class discussion on Fourier Series.
Explorations

Exploration 16.1 – Spring and Pendulum Motion
Topic(s): Periodic Motion, Springs

Exploration 16.2 – Pendulum Motion and Energy
Topic(s): Periodic Motion, Energy

Exploration 16.3 – Simple Harmonic Motion with and without Damping
Topic(s): Periodic Motion, Springs, Damping

Exploration 16.4 – Pendulum Motion, Forces, and Phase Space
Topic(s): Periodic Motion, Phase Space Representation

Exploration 16.5 – Driven Motion and Resonance
Topic(s): Periodic Motion, Springs, Driving Forces

Exploration 16.6 – Damped and Forced Motion
Topic(s): Periodic Motion, Springs, Damping

Exploration 16.7 – A Chain of Oscillators
Topic(s): Periodic Motion, Springs, Damping, Driving Forces

Problems

P.16.1 (Level 1)
Topic(s): Periodic Motion, Springs
Answer:
a) $x = -9.8 \text{ m}$ to $x = 8.3 \text{ m}$,
b) $x = 13 \text{ m}$,
c) 6 N/m,
d) 0.95 kg,
e) $x = -9.8 \text{ m}$ to 8.3 m

P.16.2 (Level 1)
Topic(s): Periodic Motion, Springs
Answer:
a) Anim 1,
b) 6.3 s and 0.16 Hz,
c) \(-1.6 \cos (2\pi(0.16)t)\),
d) 2 N/m
P.16.3 (Level 1)
Topic(s): Periodic Motion, Springs
Answer: a) Anim 3, b) 1.6 \sin(2\pi \times 0.16t), c) 1.3 J

P.16.4 (Level 1)
Topic(s): Periodic Motion, Springs
Answer: No, this is most easily seen in Anim 5 which shows that the force is not a linear restoring force as required by SHM

P.16.5 (Level 1)
Topic(s): Periodic Motion, Springs
Answer: 0.5 N/m

P.16.6 (Level 2)
Topic(s): Periodic Motion, Springs, Energy
Answer: a) 0.43 N/m, b) 5.3 J, c) 7.3 m/s

P.16.7 (Level 1)
Topic(s): Periodic Motion
Answer: Animation 3

P.16.8 (Level 2)
Topic(s): Periodic Motion
Answer: 0.9 m/s
P.16.9 (Level 2)

Topic(s): Periodic Motion
Answer: a) Anim 1, b) Anim 3, c) Anim 2, d) –Cos(1.8t), e) Sin(1.8t), f) Cos(1.8t), g) 1.8-1.8x (found by using energy conservation)

P.16.10 (Level 2)

Topic(s): Periodic Motion
Answer: 3.3 m/s^2
L=3m, T=6s

P.16.11 (Level 2 - Calculus)

Topic(s): Periodic Motion
Answer: Anim 4
The acceleration is proportional to r

P.16.12 (Level 3)

Topic(s): Periodic Motion, Buoyant Force
Answer: a) The weight must equal the buoyant force, b) weight of cube – buoyant force, c) 0.035 s, d) 3g
Hint for (d) – Keff = Fbuoyant/x=density*g*area=98N, then use m = k*(T/2Pi)^2.
Chapter II.17: Waves

Illustrations

Illustration 17.1: Wave Types
Topic(s): Wave Motion
Purpose: Introduction to the types of waves.
Suggested Use: This is a good illustration to use when first introducing wave types because it provides a strong visual representation. If used in class, draw students attention to the red dot and perhaps have them predict both its motion and the shape of the graph before showing them.

Illustration 17.2: Wave Functions
Topic(s): Wave Motion
Purpose: Introduction mathematical representations of waves.
Suggested Use: Reading assignment.

Illustration 17.3: Superposition of Pulses
Topic(s): Wave Motion, Superposition
Purpose: To introduce wave superposition.
Suggested Use: A must for in-class use. This is a Physlet representation of the classic superposition animation that is often shown when discussing interference of waves and pulses.

Illustration 17.4: Superposition of Traveling Waves
Topic(s): Wave Motion, Superposition, Standing Waves
Purpose: To show the effects of wave superposition.
Suggested Use: Reading assignment, In-Class Demo. If used in-class have students predict what the superposition will look like once the two waves meet. Most students will be surprised by the result.

Illustration 17.5: Resonant Behavior on a String
Topic(s): Wave Motion, Superposition, Resonance
Purpose: To show resonant behavior.
Suggested Use: Reading assignment, In-Class Demo. This makes a great visualization for resonance behavior and is effective in the classroom.

Illustration 17.6: Plucking a String
Topic(s): Harmonics
Purpose: To introduce harmonics.
Suggested Use: Reading assignment.
Illustration 17.7: Group and Phase Velocity

Topic(s): Wave Motion, Group and Phase Velocity
Purpose: To introduce the concepts of group and phase velocity.
Suggested Use: Reading assignment. This is a good illustration to have students look at on their own as there is a lot of “playing around” that they can do with it.

Explorations

Exploration 17.1 – Superposition of Two Pulses
Topic(s): Wave Motion, Superposition

Exploration 17.2 – Measure the Properties of a Wave
Topic(s): Wave Motion

Exploration 17.3 – Traveling Pulses and Barriers
Topic(s): Wave Motion, Reflection

Exploration 17.4 – Superposition of Two Waves
Topic(s): Wave Motion, Superposition

Exploration 17.5 – Superposition of Two Waves
Topic(s): Wave Motion, Superposition

Exploration 17.6 – Make a Standing Wave
Topic(s): Wave Motion, Superposition, Standing Waves

Problems

P.17.1 (Level 1)
Topic(s): Wave Motion
Answer: 0.5 Hz

P.17.2 (Level 1)
Topic(s): Wave Motion
Answer: 8 cm/s

P.17.3 (Level 2)
Topic(s): Wave Motion
Answer: 2000 N
P.17.4 (Level 1)
Topic(s): Wave Motion, Superposition
Answer: only 1 is true

P.17.5 (Level 1)
Topic(s): Wave Motion, Superposition
Answer: only 4 is true

P.17.6 (Level 1)
Topic(s): Wave Motion, Standing Waves
Answer: only C is true

P.17.7 (Level 2)
Topic(s): Wave Motion, Standing Waves
Answer: 2 cm/s
Use $v = \lambda f$

P.17.8 (Level 2)
Topic(s): Wave Motion, Standing Waves
Answer: 3g
P.17.9 (Level 1)
Topic(s): Wave Motion
Answer: a) $a = \text{period}$, $b = \text{phase}$, $c = \text{amplitude}$, b) $T = 3\text{s}$, phase=1rad, $A = 2.1 \text{ m}$

P.17.10 (Level 1)
Topic(s): Wave Motion
Answer: a) 0.5 Hz, 2.65 cm, 2s, c) $4\times\cos[2\times\pi\times(x/2.65+t/2)]$

P.17.11 (Level 2)
Topic(s): Standing Waves, Wave Motion
Answer: a) 4 m/s, c) $1.8 \cos(2\times\pi/2\times t)$, d) $2.5 \sin(\pi/4\times x - \pi\times t) + 2.5 \sin(\pi/4\times x + \pi\times t)$

P.17.12 (Level 1)
Topic(s): Standing Waves, Wave Motion
Answer: a) For $F(x,t) \ldots 0.7 \text{ m/s}$, 4m, $1/6 \text{ Hz}$, For $g(x,t) \ldots -0.7 \text{ m/s}$, 4m, $1/6 \text{ Hz}$, b) 4m, $1/6 \text{ Hz}$, 0 m/s

P.17.13 (Level 1)
Topic(s): Wave Motion
Answer: $y(x,t) = 2.3 \sin [2\times\pi(x/7.2-t/3.8)] \text{ cm}$

P.17.14 (Level 1)
Topic(s): Standing Waves, Wave Motion
Answer: a) 2 m/s, b) $\sin[2\times\pi(x/8-t/4)] + \sin[2\times\pi(x/8+t/4)]$

P.17.15 (Level 2)
Topic(s): Standing Waves, Wave Motion
Answer: a) 0.5 Hz, 2s, 1.6 m, b) $y(0,t) = 5\cos(\pi\times t)$, $y(2,t)=5\cos[2\times\pi(2/1.6+t/2)]$, c) at $x=0$, $v=-5\sin(\pi\times t)$, at $x=2$ $v=-5\sin(7.85+\pi\times t)$
P.17.16 (Level 2)

Topic(s): Wave Motion
Answer:
a) no,
b) \(\sin(2\pi t/5.3) \),
c) only the phase is different,
d) too few markers can make the wavelength seem too long,
d) \(\sin(2.3x-1.2t-1.3) \)

P.17.17 (Level 1)

Topic(s): Standing Waves, Wave Motion
Answer:
a) sketch is mirror image of the wave form,
b) sketch is shifted in time
Chapter II.18: Sound

Illustrations

Illustration 18.1: Representations of 2-d Waves
Topic(s): Wave Motion
Purpose: To show students how waves can be represented in two dimensions.
Suggested Use: Reading Assignment

Illustration 18.2: Molecular View of a Sound Wave
Topic(s): Sound Waves
Purpose: To show students why sound is considered to be a wave.
Suggested Use: This is a great Physlet to show students during class when introducing sound waves. Use it to emphasize to students that a sound wave is merely a wave of molecular vibrations. It also clearly shows why sound is a longitudinal wave.

Illustration 18.3: Interference in Time and Beats
Topic(s): Superposition, Beats
Purpose: To show the addition of sound waves.
Suggested Use: Reading assignment.

Illustration 18.4: Doppler Effect
Topic(s): Doppler Effect
Purpose: To visually demonstrate the relationship between sound sources and receivers when one and/or both are moving.
Suggested Use: This is another Physlet that makes a great in-class demonstration. It is helpful when explaining to students why there is a Doppler effect. Show the animations as you introduce the Doppler effect in order to build a conceptual understanding before mathematics are introduced.

Illustration 18.5: The Location of a Supersonic Airplane
Topic(s): Sonic Boom
Purpose: To show why a supersonic airplane produces a sonic boom.
Suggested Use: Use this as an in-class demonstration when talking about sonic booms. It can help students to conceptually and intuitively the reasons behind the boom.

Explorations

Exploration 18.1 – Creating Sounds by Adding Harmonics
Topic(s): Superposition, Harmonics

Exploration 18.2 – Creating Sounds by Adding Harmonics
Topic(s): Superposition, Harmonics, Electronic Music
Exploration 18.3 – A Microphone between Two Loudspeakers
Topic(s): Beats

Exploration 18.4 – Doppler Effect and the Velocity of the Source
Topic(s): Doppler Effect

Exploration 18.5 – An Ambulance Drives by with its Siren on
Topic(s): Doppler Effect

Problems

P.18.1 (Level 1)
Topic(s): Sound Waves
Answer: 0.35 m/s

P.18.2 (Level 1)
Topic(s): Sound Waves
Answer: Anim 1

P.18.3 (Level 1)
Topic(s): Superposition
Answer: When two or more sources are present there is interference which leads to dead spots.

P.18.4 (Level 1)
Topic(s): Sound Waves
Answer: 3.4 m/s
T = 0.01s, f=100 Hz

P.18.5 (Level 2)
Topic(s): Sound Waves
Answer: 71 Hz
T = 0.02 s, f = 50 Hz

P.18.6 (Level 1)
Topic(s): Beats
Answer: 4 Hz

P.18.7 (Level 2)
Topic(s): Doppler Effect
Answer: a) Ambulance Driver, b) Woman, c) Man

P.18.8 (Level 2)
Topic(s): Doppler Effect
Answer: a) 2 and 3, b) All travel at the speed of sound.

P.18.9 (Level 1)
Topic(s): Doppler Effect
Answer: Animation 3

P.18.10 (Level 2)
Topic(s): Doppler Effect
Answer: 47 Hz

\[
\begin{align*}
X_0 &= 2.42 \\
X &= -1.59 \\
\Delta t &= 0.4 \\
V &= \frac{\Delta X}{\Delta t} = 10 \text{ m/s}
\end{align*}
\]

\[
\begin{align*}
f_1 &= \left(1 + \frac{V_e}{V}\right)f \\
f_2 &= \left(1 - \frac{V_e}{V}\right)f
\end{align*}
\]

\[
\Delta f = f_2 - f_1 = f \left[1 - \frac{V_e}{V} - 1 + \frac{V_e}{V} \right] = -2 f \frac{V_e}{V}
\]

\[
10 \Delta f = \frac{2(1800 \text{ Hz})(10 \text{ m/s})}{343 \text{ m/s}} = 47 \text{ Hz}
\]

P.18.11 (Level 1)
Topic(s): Standing Waves
Answer: a) 0, -2cm, 2cm, antinode, b) -0.1cm, 0.1cm, 0.2cm, -0.2cm, node c) 0.2 cm, d) 800 Hz, e) 1.6 m/s

P.18.12 (Level 1)
Topic(s): Harmonics
Answer: a) 3rd Harmonic, b) 2000 Hz, c) 666 Hz

P.18.13 (Level 2)
Topic(s): Harmonics
Answer: a) 5th Harmonic, b) 333 Hz, c) 533 Hz, d) 32 m/s

P.18.14 (Level 2)
Topic(s): Harmonics
Answer: a) 7th Harmonic, b) 250 Hz, c) 36 Hz, d) 35 m/s

P.18.15 (Level 2)
Topic(s): Harmonics
Answer: a) 3333 Hz, b) 741 Hz for closed pipe and 1481 Hz open end pipe
P.18.16 (Level 1)

Topic(s): Harmonics

Answer: a) 5th Harmonic, b) 19 cm
Chapter II.19: Heat

Illustrations

Illustration 19.1: Specific Heat

Topic(s): specific heat

Purpose: To demonstrate the relationship between heat, temperature and specific heat.

Suggested Use: Have students compare the high heat and low heat cases. Students should be able to predict what will happen to the change in temperature (for materials exposed to heaters for the same amount of time) as the mass increases. It is important for students to recognize that the temperature change depends on the heat added and the mass of the object, but that the specific heat capacity is a constant (at least for the problems they will encounter). As an extension, if students use $Q=Pt$, vary mass and ΔT (temp change) and $Q=mc\Delta T$ they will find that $c=1000 \text{ J/kg*K}$

Illustration 19.2: Heat Transfer, Conduction

Topic(s): conduction

Purpose: To demonstrate the effect of various parameters on the conductivity of a wall.

Suggested Use: Students can change the conductivity, thickness and temperature difference across a wall to see the power transfer across the wall. They can use this model to develop the relationship between power and these factors ($P \sim k\Delta T/(\text{thickness})$). As an extension, students can use $P=kA\Delta T/L$ and find that the cross-sectional area is 0.1.

Illustration 19.3: Heat Transfer, Radiation

Topic(s): radiation, heat balance

Purpose: To illustrate transfer of heat by radiation applied to estimating planet temperatures.

Suggested Use: This very simple model allows students to see the temperature of various planets if the atmosphere of the planets is neglected. For this model, $P_{\text{in}}=P_{\text{out}}$ and the planet effectively absorbs radiation across an area of $\pi R^2 (P/A) \cos \phi$

but radiates back out over the surface area of a sphere: $4 \pi R^2$. The radiation from the sun drops off as $1/r^2$ and the number used for the Earth is the value at the top of the atmosphere. Students can see the predictions of this model and then get a sense of the impact of the atmosphere (and the Greenhouse effect). It provides an application of the ideas of heat transfer.
Explorations

Exploration 19.1
Topic(s): specific heat, work, energy

Exploration 19.2
Topic(s): thermal expansion

Exploration 19.3
Topic(s): calorimetry

Exploration 19.4
Topic(s): conduction, heat balance

Problems

P.19.1 (Level 2)
Topic(s): specific heat, work, energy, calorimetry
Answer:
3.04x10^3 J/kg*K. V=1x1x0.1=0.1m^3; m=92-kg; Q=cm\Delta T
W=6860J so c=3043 J/kg*K.

P.19.2 (Level 2)
Topic(s): friction, power, calorimetry
Answer:
\mu=0.6. P=Q/t=cm\Delta T/t=11.8*mass
P_{friction}=F*v=\mu Nv=\mu mgv; v of conveyor belt=2 m/s so P=\mu g*2.

P.19.3 (Level 2)
Topic(s): thermal expansion
Answer:
\alpha=1.1x10^{-4}/K. Note that the rod expands in both directions—measure \Delta L for one end, but recognize that must double that to find total \Delta L—for L=20m and final T=1000, find a \Delta L of 9.5 units x 0.1m for a total \Delta L=1.8m.

P.19.4 (Level 3)
Topic(s): thermal expansion
Answer:
\alpha=5x10^{-5}/K. T is increasing (entire plate expands so hole gets bigger as well). From t=0 to t=2, hole expands 1 mm in each dimension. This gives a \Delta A of .001mx0.2m for each side and there are 4 sides for a total \Delta A=8x10^{-4}m. Using, \Delta A=2\alpha A\Delta T gives the value for \alpha.
P.19.5 (Level 2)

Topic(s): thermal expansion

Answer:

\(\alpha = 2 \times 10^{-5} / \text{K} \). Change in temperature = 1000 K. Initial diameter of hole = 19.6 mm (r = 9.8 mm) and final diameter of hole = 20 mm (r = 10 mm). A of hole is \(\pi R^2 \) and using \(\Delta A = 2 \alpha \Delta A \Delta T \), gives value for \(\alpha \).

P.19.6 (Level 2)

Topic(s): calorimetry

Answer:

c = 130 J/kg*K and L = 22.8 kJ/kg (Material: Lead). For t = 3.1 to 12.6, T = 597 K. Q = Pt = 22,800 for that time and Q = mL so L = 22.8 kJ/kg. From t = 0 to t = 3.1 \(\Delta T = 57 \) and Q = 2400 * 3.1 so c = 130 J/kg*K.

P.19.7 (Level 2)

Topic(s): calorimetry

Answer:

Specific heat of material 3 < material 2 < material 1. The final temperature of material one is the greatest and the final temperature of material three is the smallest. Since c is
a measure of the heat required to change the temperature, material three requires the least heat from the water (water temp increases the least) and has the greatest change in temperature.

P.19.8 (Level 2)

Topic(s): calorimetry

Answer:

\[c = 0.44 \text{ kJ/kg-K}. \]

Water

\[
T_{\text{initial}} = 293 \text{ K} \quad T_{\text{final}} = 308 \text{ K} \\
\Delta T_{\text{water}} = 15 \text{ K}
\]

Metal

\[
T_{\text{initial}} = 473 \text{ K} \quad T_{\text{final}} = 308 \text{ K} \\
\Delta T_{\text{metal}} = 165 \text{ K}
\]

\[Q = mc \Delta T \\ Q_{\text{metal}} = Q_{\text{water}} \\
\]

\[m_{\text{metal}} \cdot c_{\text{metal}} \Delta T_{\text{metal}} = m_{\text{water}} \cdot c_{\text{water}} \Delta T_{\text{water}} \tag{1} \]

\[m_{\text{metal}} = 2 \text{ kg} \]

\[c_{\text{metal}} = ? \]

\[c_{\text{water}} = 4.186 \text{ kJ/kg-K} \]

\[m_{\text{water}} = \rho V_{\text{water}} \]

\[V_{\text{water}} = 0.1 \text{ m} \times 0.1 \text{ m} \times 0.25 \text{ m} = V_{\text{metal}} \]

\[V_{\text{metal}} = 0.023 \text{ m}^3 \]

Substituting into equation 1:

\[
(2) \ c_{\text{metal}} (165) = (2.5)(4.186 \text{ kJ/kg-K})(15) \]

\[c_{\text{metal}} = 0.44 \text{ kJ/kg-K} \]

P.19.9 (Level 2)

Topic(s): conductivity

Answer:
k-green > k-red. When Temp1=200 and Temp2=400, interface=320. Use \(P = (kA/x) \Delta T \) and equate the power through green and red. \(x \) for the green material is 4 and 2 for the red.

P.19.10 (Level 3)

Topic(s): conductivity

Answer:

\[k_{green} = 16k_{blue}. \] If you replace the window with glass (green) of same thickness \((x=10) \), use 4 times as much power. Use \(P = (kA/x) \Delta T \). When outside temp=270, \(T_1=273, T_2=297 \). \(x\)-green=4 and \(x\)-red=2. Equate power across the materials:

\[
\frac{k_{green} A}{x_{green}} \Delta T_1 = \frac{k_{red} A}{x_{red}} \Delta T_2
\]

\[k_{green} = 16k_{blue} \]

\[k_{green} = \frac{1}{4} k_{blue} \]

Compare with

\[
\frac{k_{green} A}{0.10} = \frac{k_{blue} A}{0.04}
\]

\[k_{green} A = 300 \]

\[k_{blue} A = 75 \]

so

\[P_2 = 4P_1 \]

P.19.11 (Level 2)

Topic(s): conductivity, heat balance

Answer:

\(k = 0.15 \text{ W/m*K} \). Room temp=0, \(P=2.6\text{kW} \). \(P = (kA/x) \Delta T \). \(A=\pi r^2 h \) where \(r=1.5\text{m} \) and \(h=5\text{m} \) and \(x=0.1\text{m} \).
Chapter II.20: Kinetic Theory and Ideal Gas Law

Illustrations

Illustration 20.1: Maxwell-Boltzmann Distribution

Topic(s): Maxwell-Boltzmann distribution, kinetic theory
Purpose: To show that gas particles have a speed distribution.
Suggested Use: Changing the temperature of the gas in the box allows students to quickly see the speed distribution and compare the histogram of the speeds with the Maxwell-Boltzmann distribution function as well as the average, rms and mean speeds.

Illustration 20.2: Kinetic Theory, Temperature, and Pressure

Topic(s): kinetic theory, ideal gas law
Purpose: To connect microscopic quantities: kinetic energy and momentum with macroscopic quantities: temperature and pressure.
Suggested Use: Students should compare both the speeds and the kinetic energies of the blue and yellow particles. Have students predict what will happen as the temperature is increased. Finally, it is worth having students think about the assumptions in developing the ideal gas law. Here they can see the effect of finite particle size (since the ideal gas law assumes a point particle) where the effective volume is reduced because the particles are not point-like.

Illustration 20.3: Thermodynamic Processes

Topic(s): pV diagrams, thermodynamic processes
Purpose: To connect pV diagrams with a microscopic model of gas particles in a container and provide a comparison between the typical thermodynamic processes that students will encounter.
Suggested Use: Allow students the chance to compare the different processes. What do they notice about them? Why do they think we pick out these particular ones (as opposed to the unnamed process)?

Illustration 20.4: Evaporative Cooling

Topic(s): kinetic theory, Maxwell-Boltzmann distribution
Purpose: To demonstrate why evaporation is a cooling process.
Suggested Use: Have students explain why the temperature changes the way that it does when they allow particles to pass through the membrane. Why does this help explain why evaporation is a cooling process? Note that the membrane requires the use of a “Maxwell’s demon.”

Explorations

Exploration 20.1

Topic(s): kinetic theory, ideal gas law, Maxwell-Boltzmann distribution
Instructors Guide for *Physlet® Physics*
Anne J. Cox and Melissa H. Dancy

Exploration 20.2
Topic(s): kinetic theory, partial pressure

Exploration 20.3
Topic(s): ideal gas law

Exploration 20.4
Topic(s): equipartition theorem, degrees of freedom

Exploration 20.5
Topic(s): work, pV diagram, thermodynamic processes, 1st law of thermodynamics

Exploration 20.6
Topic(s): specific heat, 1st law of thermodynamics

Problems

P.20.1 (Level 2)
Topic(s): kinetic theory, ideal gas law
Answer:
\[T = 122, \quad P = 13.5. \]
\(<P>= .57 \text{ (ideal gas law: } P = .54); \text{ all the same speed so } T \text{ same: } T = 122; \]
Ideal gas law: \(P = 13.5. \)

P.20.2 (Level 1)
Topic(s): kinetic theory
Answer:
right wall \(T > \) left wall \(T \)

P.20.3 (Level 2)
Topic(s): kinetic theory, Maxwell-Boltzmann distribution
Answer:
green > pink > yellow. \(T \) is same on both sides the KE is the same so look at Maxwell-Boltzmann distribution to compare the speeds and by extension (\(KE = \frac{1}{2} mv^2 \)), the masses.

P.20.4 (Level 2)
Topic(s): equipartition theorem, degrees of freedom, kinetic theory
Answer:
pink=total energy; green=KE of atom; red=KE of molecule; black=translational KE of molecule; blue=rotational KE of molecule. KE of atom+molecule=total KE and KE of translation and rotation of molecule=total KE of molecule. KE rotation (1 degree of freedom) < KE translation (2 degrees of freedom).

P.20.5 (Level 1)
Topic(s): ideal gas law
Answer:
If P_x^2 and V divides in $\frac{1}{2}$, T should stay the same.

P.20.6 (Level 3)
Topic(s): ideal gas law, pressure
Answer:
$\rho=0.94 \times 10^3 \text{ kg/m}^3$. PV=constant. Balloon $r_i=1$ and $r_f=1.2$. $P_f=1.01 \times 10^5 \text{ Pa}$ use $P_iV_i=P_fV_f$ and find $P_i=1.74 \times 10^5 \text{ Pa}$ and $P=\rho gh+P_0$.

Pressure on balloon changes as a function of the depth of the liquid.

$$P = \rho gh \quad \text{(fluids)}$$

Balloon: temperature is constant so

$$PV = \text{constant}$$

as balloon rises, pressure decreases so volume increases

Balloon radius: $r_i = 1 \text{ m}$, $r_f = 1.2 \text{ m}$

$$V_i = \frac{4}{3} \pi r_i^3, \quad V_f = \frac{4}{3} \pi r_f^3$$

At top of fluid:
$$P_c = 1.01 \times 10^5 \text{ Pa} \quad (1 \text{ atm})$$

bottom (middle of initial position of balloon)

$$P_f = \rho gh + P_i, \quad h = 3.5 \text{ m}, \quad \Delta h = 4 \text{ m}$$

Using $PV = \text{constant}$:

$$P_i V_i = P_f V_f$$

$$\left(\frac{\rho (1.01 \times 10^5) \pi (1.2)^3}{\pi (1.01 \times 10^5) \pi (1.2)^3}\right) = \left(\frac{1.01 \times 10^5 \pi (1.2)^3}{\pi (1.01 \times 10^5) \pi (1.2)^3}\right)$$

$$\rho = 0.94 \times 10^3 \text{ kg/m}^3$$

P.20.7 (Level 2)
Topic(s): ideal gas law, thermal expansion
Answer:
a) $\beta=1/100$.
b) $\beta=1/T$. $\Delta h=4$ and $\Delta T=200$ so $\Delta V=\beta V \Delta T$ gives $\beta=0.01$; derivation: $\Delta V=(V_i/T_i) \Delta T$ so $\beta=1/T=1/100$.

P.20.8 (Level 2)
Topic(s): ideal gas law, thermodynamic processes
Answer:
 a) $W=48.5$. $W=PV\Delta V$
 b) $T_f=-150$. $V/T=\text{constant}$
 c) temperature scale $=50^\circ C$.

P.20.9 (Level 1)

Topic(s): thermodynamic processes, 1st law of thermodynamics

Answer:

$Q=1386$. $\Delta T=0$; $W=1386$.

P.20.10 (Level 3)

Topic(s): ideal gas law, thermodynamic processes, 1st law of thermodynamics

Answer:

a) $-3652J$. $W=PV\Delta V$ and $\Delta V=V/2$ so $W=PV/2=nRT/2=-3652J$.

b) $Q=-9130J$. $V/T=\text{constant}$; $T=146.5K$ so $
\Delta U=(3/2)nR\Delta T=-5478J$ and $Q=W+\Delta U$.

Instructors Guide for *Physlet® Physics*
Anne J. Cox and Melissa H. Dancy

P.20.11 (Level 2)

Topic(s): thermodynamic processes, 1st law of thermodynamics

Answer:

a) Work: $W = \frac{1}{2} p_V = \frac{1}{2} nR \Delta T$

$$W = \frac{1}{2} \times 3 \times R \Delta T = \frac{1}{2} \times 3 \times 8.32 \times (298 - 273) = -3.65 \text{ kJ}$$

b) $\Delta U = Q - W$

$$\Delta U = \frac{3}{2} nR \Delta T = (\frac{3}{2}) \times 3 \times 8.32 \times (298 - 273) = -5.5 \text{ kJ}$$

b) $Q = -5.5 \text{ kJ} + -3.65 \text{ kJ} = -9 \text{ kJ}$

P.20.12 (Level 3)

Topic(s): thermodynamic processes, 1st law of thermodynamics, equipartition of energy

Answer:
a) $\gamma = 4/3$. 1: W=0; isochoric; 2: W=750; 3: W=3000=Q so from 1: $Q = (f/2)N\Delta T = 3000$ so $f=6$ so $\gamma = 4/3$.

b) 6

c) polyatomic

<table>
<thead>
<tr>
<th>Process 1: isochoric (constant V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_i = 30$</td>
</tr>
<tr>
<td>$p_f = 40$</td>
</tr>
<tr>
<td>$W = 0$</td>
</tr>
<tr>
<td>$Q = C_V N \Delta T$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process 2: isobaric (constant P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_i = 30$</td>
</tr>
<tr>
<td>$T_f = 187.5$</td>
</tr>
<tr>
<td>$W = P \Delta V = (30)(125) = 3750$</td>
</tr>
<tr>
<td>$W = \frac{\Delta U}{f} N \Delta V = 750$</td>
</tr>
<tr>
<td>$Q = C_P N \Delta T$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process 3: isothermal (constant T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_i = 30$</td>
</tr>
<tr>
<td>$p_f = 1$</td>
</tr>
<tr>
<td>$W = \int p , dV = \frac{\Delta W}{f} N \Delta V = 3000$</td>
</tr>
<tr>
<td>$Q = 3000$</td>
</tr>
</tbody>
</table>

- Q is the same for all processes so from Process 1:
 \[Q = \Delta U = C_V N \Delta T = C_V (20)(50) = C_V (100) \]
 \[Q = 3000 = C_V (500) \]
 \[C_V = \frac{3000}{500} = 6 \]

- from Process 2:
 \[Q = C_P N \Delta T = C_P (20)(57.5) \]
 \[3000 = C_P 750 \]
 \[C_P = \frac{3000}{750} = 4 \]

\[\gamma = \frac{4}{3} \]

- From Process 1 and using $\Delta U = \frac{f}{2} N \Delta T$
 \[Q = \Delta U + W = \Delta U + 0 \]
 \[3000 = \frac{f}{2} N \Delta T \]
 \[\frac{f}{2} = 6 \]

OR:
\[C_V = f \left(\frac{1}{2} \right) \]

where f is the number of degrees of freedom

c. $f = 6$, polyatomic
Chapter II.21: Engines and Entropy

Illustrations

Illustration 21.1: Carnot Engine

Topic(s): engines, thermodynamic processes
Purpose: To demonstrate a Carnot Engine, showing the heat absorbed and released along with the work done.
Suggested Use: Have students describe and/or identify the different steps, making sure they agree with the discussion in the text. Students should watch both the piston and the pV diagram for each step, making sure they understand the connection between the two. As an extension that provides practice for future problems, students can calculate the change in internal energy for each step as well as the work done and thus the heat absorbed and released to verify the numbers in the Illustration.

Illustration 21.2: Entropy and Reversible/Irreversible Processes

Topic(s): entropy, reversible/irreversible processes, Maxwell-Boltzmann distribution
Purpose: To provide a qualitative picture of entropy associated with disorder and statistics.
Suggested Use: Students should describe the differences between the two animations (one highly ordered and one disordered) and then should quickly see which is more likely and identify which is a state of lower entropy. Also have students give examples of processes that result in an increase and a decrease in entropy.

Illustration 21.3: Entropy and Heat Exchange

Topic(s): entropy
Purpose: To connect heat exchange (heat flows from hot to cold) to the second law of thermodynamics.
Suggested Use: Students should verify that energy is conserved in the two animations (two objects in thermal contact: animation 1 the temperatures of the two objects get closer together while in animation 2, the temperatures of the two objects get further apart) so neither violates the 1st law of thermodynamics. Students should recognize that the difference between the two animations is the entropy change.

Illustration 21.4: Engines and Entropy

Topic(s): entropy, engines, engine efficiency
Purpose: To connect engine efficiency with entropy.
Suggested Use: Students can observe both pV diagrams (to find the heat and work) and TS diagrams for the same Carnot engine. Students should verify that the change in entropy is zero for the Carnot engine cycle. As an extension, students can verify the engine efficiency equation by using the following data: Step 1: Q=2079; Step 3: Q=-1380; net W=698 so $\varepsilon=.336$.
Explorations

Exploration 21.1
Topic(s): engines, engine efficiency

Exploration 21.2
Topic(s): engines, engine efficiency

Exploration 21.3
Topic(s): entropy, statistics

Exploration 21.4
Topic(s): entropy, thermodynamic processes, pV diagrams

Problems

P.21.1 (Level 3)
Topic(s): engines, thermodynamic processes

Answer:

a. Step 1: isothermal; Step 2: isochoric; Step 3: adiabatic.

b. $\gamma=1.4$. Step 2: $W=0, Q = \Delta U = (f/2)N\Delta T = -1513$ find $f=5$ so $\gamma=1.4$.

c. Step 1: isothermal; $W=Q=1732$; Step 2: isochoric: $W=0$; Step 3: adiabatic: $W=\Delta U=(f/2)N\Delta T=-1513$.

d. Net work=219.
Instructors Guide for *Physlet® Physics*
Anne J. Cox and Melissa H. Dancy

P.21.2 (Level 3)

Topic(s): engines, thermodynamic processes, engine efficiency

Answer:

a. Thermodynamic processes

Step 1: isothermal

\[
P_i = 2.5 \quad P_f = 12.5 \quad V_i = 100 \quad V_f = 200 \quad T = 125 \quad N = 20
\]

\[
W = Q = 1732 \quad (\Delta U = 0)
\]

Step 2: isochoric

\[
P_i = 12.5 \quad V = 200 \quad T_i = 125 \quad N = 20
\]

\[
P_f = 9.47 \quad T_f = 94.7
\]

\[
W = 0 \quad Q = -1513 = \Delta U
\]

Step 3: adiabatic

\[
P_i = 9.47 \quad V_i = 200 \quad T_i = 94.7 \quad N = 20
\]

\[
P_f = 2.5 \quad V_f = 100 \quad T_f = 125
\]

\[
Q = 0
\]

b. \(\gamma\)

From Step 2:

\[
\Delta U = \frac{f}{2} N \Delta T
\]

\[-1513 = \frac{f}{2} (20) (-30.3)
\]

\[
f = 5
\]

\[
\delta = \frac{c_p}{c_v} = \frac{2}{5}
\]

\[
c_v = \frac{f}{2}, \quad c_p = 1 + \frac{f}{2}
\]

\[
\gamma = \frac{c_v}{c_p} = 1.4
\]

OR:

From Step 3:

\[
P_i \cdot V_i^x = P_f \cdot V_f^x
\]

\[
P_i / P_f = \left(\frac{V_f}{V_i}\right)^x
\]

\[
\ln \left(\frac{P_i}{P_f}\right) = \gamma \ln \left(\frac{V_f}{V_i}\right)
\]

\[
\gamma = \frac{\ln \left(\frac{9.47}{2.5}\right)}{\ln \left(\frac{200}{100}\right)} = 1.4
\]

c. Step 1: \(W = 1732\) \quad Step 2: \(W = 0\)

Step 3: \(Q = 0\) \quad \(W = \Delta U = \frac{f}{2} N \Delta T\)

\(W = \frac{f}{2} (20) (-30.3) = -1513\)

d. Net work = 219
a. \(\gamma = 1.4 \) Step 1: \(W = (1/1-\gamma)(p_f V_f - p_i V_i) \) or use \(p V = \) constant.

b. Step 1: \(Q = 0, W = 1816 \). Step 2: \(W = 0 \). \(Q = -3185 \). \(Q = \Delta U = (5/2)N\Delta T = -3185 \); Step 3: \(W = -798 \) \(Q = 0 \); Step 4: \(W = 0 \); \(Q = 4201 \).

c. \(\varepsilon = 0.24 \). \(\varepsilon = \) net work/\(Q_{\text{hot reservoir}} = (1816-798)/4201 = 0.24 \)

P.21.3 (Level 3)

Topic(s): engines, thermodynamic processes, engine efficiency

Answer:

a. Step 1: isobaric; Step 2: adiabatic; Step 3: isobaric; Step 4: adiabatic

b. Step 1: \(W = 1500 \). \(W = p \Delta V = 1500 \); Step 2: \(W = 2001 \). \(W = \Delta U = (3/2)N \Delta T = 2001 \); Step 3: \(W = -967 \); Step 4: \(W = -1200 \).

c. net \(W = 1334 \).

d. \(\varepsilon = 0.36 \). Step 1: \(Q = 3750 \); \(\varepsilon = 1334/3750 = 0.36 \).

P.21.4 (Level 3)

Topic(s): engines, thermodynamic processes, engine efficiency

Answer:

a. **Adiabatic:** Burning gas mixture (step 1) & Compressing gas (step 3); **Isochoric:** (step 2) beginning of expelling smoke & very end of animation (beginning of burning gas mixture) (step 4).

b. End up at same volume so net \(W = 0 \). Heat is released in exhaust of smoke (and then intake of gas).

c. Step 1: \(W = 183 \). \(W = \Delta U = (5/2)N \Delta T = 183 \); Step 3: \(W = -60.4 \)

d. Step 2: \(Q = -150 \). \(Q = \Delta U = (5/2)N \Delta T = -150 \); Step 4: \(Q = 273 \)

e. \(\varepsilon = 0.55 \). \(\varepsilon = (183-60)/273 = 0.55 \).

P.21.5 (Level 3)

Topic(s): engines, thermodynamic processes, engine efficiency

Answer:

a. \(\text{n} = 0.067 \) moles. \(pV = nRT \).

b. This is a Stirling cycle. Step 1: \(W = 0 \); \(Q = 289J \). \(\Delta U = (3/2)N \Delta T = 291J \). Step 2: \(Q = W = 200J \), \(W = nRT \ln(V_f/V_i) = 200J \). \(\Delta U = 0 \); Step 3: \(W = 0 \); \(Q = -289J \); Step 4: \(W = -67J = Q \).

d. \(\varepsilon = 0.27 \) OR \(\varepsilon = 0.67 \). \(\varepsilon = (200-67)/(289+200) = 0.27 \) OR \(\varepsilon = (200-67)/200 = 0.67 \). You can “store” the heat from the two isochoric expansions and release and then absorb it back to the gas (see for example Halliday, Resnick and Walker, Fundamentals of Physics 5\(^{th}\) ed, p. 514-516 for an example of the high efficiency Stirling Engine).
a. Step 1:
\[P_i = 1 \text{ atm} = 1.01 \times 10^5 \text{ Pa} \quad T_i = 173 \text{ K} \]
\[P_f = 3 \text{ atm} = 3.03 \times 10^5 \text{ Pa} \quad T_f = 519 \text{ K} \]

\[V_i = 0.88 \times 0.84 \times 0.3 = 9.6 \times 10^{-4} \text{ m}^3 \quad \text{Isochoric} \]

\[n = \frac{P_i V_i}{RT_i} = \frac{(10^5)(9.6 \times 10^{-4})}{(8.32)(173)} = 0.067 \text{ moles} \]

\[n = 0.067 \text{ moles} \]

b. Step 1:
\[\Delta V = 0 \quad \Rightarrow \quad W = 0 \]

\[\Delta U = \frac{3}{2} n R \Delta T = \frac{3}{2}(0.067)(8.32)(306) = 289 \text{ J} \]

\[Q = \Delta U + W = 289 \text{ J} \]

Step 2:
\[P_i = 3 \text{ atm} \quad V_i = 9.6 \times 10^{-4} \text{ m}^3 \]
\[P_f = 1.5 \text{ atm} \quad V_f = 2V_i \]

\[\text{Isothermal} \quad Q = \int_{V_i}^{V_f} nRT \ln \frac{V_f}{V_i} = 200 \text{ J} \]

Step 3:
\[P_i = 1.5 \text{ atm} \quad V_i = 19.2 \times 10^{-4} \text{ m}^3 \quad T_i = 519 \text{ K} \]
\[P_f = 0.5 \text{ atm} \quad T_f = 173 \text{ K} \]

\[\Delta V = 0 = W \]

\[\Delta U = \frac{3}{2} n R \Delta T = \frac{3}{2}(0.067)(8.32)(306) = -289 \text{ J} \]

\[Q = -289 \text{ J} \]

Step 4:
\[P_i = 0.5 \text{ atm} \quad V_i = 19.2 \times 10^{-4} \text{ m}^3 \quad T_i = 173 \text{ K} \]
\[P_f = 1 \text{ atm} \quad V_f = 9.6 \times 10^{-4} \]

\[\Delta U = 0 \]

\[W = nRT \ln \frac{V_f}{V_i} = -67 \text{ J} \quad Q = 0 \]

c.

\[\text{d. Net work} = W_{vap} = 200 - 67 = 133 \]

\[Q_{closed} = 200 + 289 = 489 \text{ J} \]

\[E = \frac{133}{200} = 0.67 \]

\[\text{OR} \]

\[E = \frac{133}{200} = 0.67 \]

if you store the heat from the two isochoric steps (see, for example, Halliday, Resnick, Walker, Fundamentals of Physics, 5th ed., p.514-516 for an example of the high efficiency Stirling engine.)
P.21.6 (Level 1)

Topic(s): ideal gas law, entropy

Answer:
Animation 1. It is the only one with the correct change in T (if Vx2 then Tx2 for isobaric)—all have same change in S.

P.21.7 (Level 2)

Topic(s): thermodynamic processes, entropy

Answer:
a. isothermal.
b. $\Delta S=27$. Graph is a horizontal line on T-S graph at T=80.

P.21.8 (Level 3)

Topic(s): engines, thermodynamic processes, entropy

Answer:
a. step 2
b. steps 3 & 4
c. Step 1: $Q=0$, $W=3000$. adiabatic use $pV^\gamma=constant$ and find $\gamma=1.33$, polyatomic. $W=3000=-\Delta U$; Step 2: $W=1119=Q$, isothermal so use $W=NT\ln(V_f/V_i)$; Step 3: $Q=0$ $W=-3000$. adiabatic $Q=0$ $W=-\Delta U=-3000$; Step 4: $W=-1499$. isothermal $K=3$. $W_{net}=-380$ (W<0 because work done on the gas) so $K=1124/380=3$.
d. $\Delta S=0$. Steps 1 and 3: $\Delta S=0$ and Step 2: $\Delta S=\Delta Q/T=7.5$ and Step 4: $\Delta S=\Delta Q/T=-7.5$.
Step 1:
\[P_i = 36.4 \quad V_i = 115 \quad T_i = 250 \]
\[P_f = 11.51 \quad V_f = 261 \quad T_f = 150 \quad N = 20 \]

Adiabatic:
\[\Delta U = 0 \quad W > 0 \]

Step 2:
\[P_f = 2.91 \quad V_f = 379 \quad T = 150 \quad N = 20 \]

Isothermal:
\[\Delta U = 0 \quad Q = 1124 = W \]

Step 3:
\[P_f = 25 \quad V_f = 140 \quad T_f = 250 \quad N = 20 \]

Adiabatic:
\[\Delta U = 0 \quad W < 0 \]

Step 4:
\[P_f = 36.4 \quad V_f = 115 \quad T_f = 250 \quad N = 20 \]

Isothermal:
\[\Delta U = 0 \quad Q = -1499 = W \]

a. Step 2, heat is positive (absorbed by gas)
b. Steps 3 & 4, work is negative (done on gas)
c. Step 1:
\[\Delta U = \frac{P_i}{2} N \Delta T = -W \]

\[\frac{P_i V_i}{R} = \frac{P_f V_f}{R} \]
\[\frac{P_i}{P_f} = \left(\frac{V_f}{V_i} \right)^\gamma \]

\[\ln \frac{P_i}{P_f} = \gamma \ln \left(\frac{V_f}{V_i} \right) \]
\[\gamma = \frac{R}{C_p} = 1.33 \quad \chi = \frac{C_p}{C_v} = \frac{4}{3} \]

\[W = \left(\frac{3}{2} \right) (250) = 3750 = -W \quad Q = 3750 \]

Step 2:
\[\Delta U = 0 \quad W = NT \ln \left(\frac{V_f}{V_i} \right) \]

\[Q = W = (250) (150) \ln \left(\frac{379}{115} \right) = 1119 \]

Step 3:
\[W = -\Delta U = -\frac{P_i}{2} N \Delta T = -3660 \]

Step 4:
\[Q = W = NT \ln \left(\frac{V_f}{V_i} \right) = -1499 \]

\[W_{net} = -1499 + 1119 = -380 \]

\[\Delta S = \frac{1124}{580} = 3 \]

d. Steps 1 and 3:
\[\Delta Q = 0 \quad so \quad \Delta S = 0 \]

Step 2:
\[\Delta S = \frac{\Delta Q}{T} = \frac{1124}{150} = 7.5 \]

Step 4:
\[\Delta S = \frac{\Delta Q}{T} = \frac{-1499}{200} = -7.5 \]
Chapter II.22: Coulomb’s Law

Illustrations

Illustration 22.1: Charge and Coulomb’s Law

Topic(s): Coulomb’s law
Purpose: To demonstrate the forces between charged particles.
Suggested Use: As students build different charge configurations, they should notice the properties of Coulomb’s Law. They should also notice that the force between two unequal charges is the same magnitude (points in the opposite direction)—a Newton’s third law force pair. As an extension, students can develop a method to rank three charges (by magnitude and by sign).

Illustration 22.2: Charge and Mass

Topic(s): Coulomb’s law, charge/mass ratio, test charge
Purpose: To show the radial nature of the Coulomb force, the rapid decrease in the force as the radial distance increases, and the importance of the charge to mass ratio.
Suggested Use: Instructors should discuss the idea test charges although students have little difficulty with this concept as well as the limitations of measuring trajectories. Answers to initial questions: The sign of the fixed charge can be determined if the test charge is assumed to be positive. This is the accepted convention. Only the charge to mass ratio of the test charge can be determined from the trajectories. Like the gravitational force, the electrostatic interaction is radial and falls off as $1/(r^2)$. Unlike the gravitational force, the Coulombic force can be positive or negative.

Illustration 22.3: Monopole, Dipole, and Quadrupole

Topic(s): Coulomb’s law, charge distribution
Purpose: To demonstrate the difference in forces for charge distributions.
Suggested Use: Compare the graphs for monopoles, dipoles and quadrupoles and note that as you move further away, the charge distribution acts like the sum of the charges (zero for dipole and quadrupole).

Illustration 22.4: Charging Objects and Static Cling

Topic(s): charging by induction, “static electricity”
Purpose: To introduce a microscopic model of what happens when objects are charged.
Suggested Use: Demonstrate the various methods of charging shown in the illustration (balloon on ceiling) and charging by induction. Can use “sticky tape” demonstrations as well.
Explorations

Exploration 22.1
Topic(s): Coulomb’s law, superposition

Exploration 22.2
Topic(s): Coulomb’s law

Exploration 22.3
Topic(s): Coulomb’s law, test charge

Exploration 22.4
Topic(s): Coulomb’s law, dipole

Exploration 22.5
Topic(s): Coulomb’s law

Exploration 22.6
Topic(s): Coulomb’s law, test charge

Problems

P.22.1 (Level 1)
Topic(s): Coulomb’s law
Answer:
a) The observation that if two charges repel then another charge will either be attracted to both charges or repelled by both charges can be explained by postulating that there are only two types of charges.
b) Three charges are alike. Two are different.

P.22.2 (Level 2)
Topic(s): Coulomb’s law
Answer:
Charges do not have consistent forces: charge A is opposite polarity from B and C, but D, when it is near B and C repels one and attracts the other.

P.22.3 (Level 1)
Topic(s): Coulomb’s law, charge distribution
Answer:
+3

P.22.4 (Level 1)
Topic(s): Coulomb’s law, charge distribution
Answer:
P.22.5 (Level 1)
Topic(s): Coulomb’s law, charge distribution
Answer:

P.22.6 (Level 2)
Topic(s): Coulomb’s law
Answer:

P.22.7 (Level 2)
Topic(s): Coulomb’s law
Answer:

P.22.8 (Level 2)
Topic(s): Coulomb’s law
Answer:

P.22.9 (Level 3)
Topic(s): Coulomb’s law; charge distribution
Answer:

3 e-5C; 1 e-5 C one of them positive and one negative. Before they touch opposite sign, measure force=kq1q2/r^2 and after they touch, have equal charge of the same sign (now repel) and force=kq1q2/r^2 where 2qf=|q1|-|q2| and solve quadratic equation.
Before contact:
\[
Q_1 \quad \rightarrow \quad e \quad \rightarrow \quad Q_2
\]
\[
\text{F} = 0.75 \text{N}
\]
\[
|Q_1| - |Q_2| = Q_T
\]

After contact:
\[
Q_{7/2} \quad \rightarrow \quad Q_{7/2}
\]
\[
\text{F} = 0.25 \text{N}
\]
\[
Q_1 + Q_2 = Q_T
\]
\[
(\text{where } Q_T \text{ is net charge})
\]

(available in two ways, recall \(Q_i < 0 \)
\[
Q_1 < 0
\]
\[
Q_2 < 0
\]

\[
F = k \frac{Q_1 Q_2}{r^2}
\]

\[
k \left(\frac{Q_1}{2} \right) \left(\frac{Q_2}{2} \right) = 0.25 \quad \rightarrow \quad Q_T^2 = \frac{1}{4} k
\]

\[
k \frac{|Q_1| \cdot |Q_2|}{r^2} = 0.75
\]

\[
|Q_1| = |Q_2| - |Q_T|
\]

\[
k \frac{Q_1 (Q_2 - Q_T)}{4} = 0.75
\]

\[
k \frac{Q_1^2}{4} - k \frac{Q_1 Q_T}{4} = 0.75
\]

\[
k \frac{Q_1^2}{4} - k \frac{Q_1 Q_T}{4} = 0.75
\]

\[
k \frac{Q_1^2}{4} - k \frac{Q_1}{4} Q_1 = 0.75
\]

\[
Q_1^2 - k \frac{Q_1}{4} Q_1 = 0.75
\]

\[
Q_1^2 - k \frac{Q_1}{4} Q_1 = (4)(0.75)
\]

\[
k = \frac{9 \times 10^7}{4}
\]

\[
Q_1^2 - 2.11 \times 10^{-5} Q_1 - 3.39 \times 10^{-10} = 0
\]

\[
Q_1 = \frac{2.11 \times 10^{-5} \pm \sqrt{(2.11 \times 10^{-5})^2 + 4(3.39 \times 10^{-10})}}{2}
\]

\[
Q_1 = \frac{1.05 \times 10^{-5} \pm 2.08 \times 10^{-5}}{4} = 3.1 \times 10^{-8} \quad \text{or} \quad -1.03 \times 10^{-5}
\]

\[
Q_1 = 3 \times 10^{-5} \text{ C} \quad Q_2 = -1 \times 10^{-5} \text{ C}
\]
P.22.10 (Level 3)

Topic(s): Coulomb’s law

Answer:

9.4e-8 C (to 9.8e-8C). Equilibrium point with -3mC ball as close as possible is (-2.325,-0.9). r between charges=3.1; Fx=[k3e-3Q/9.62](2.9/3.1); Fy=[k3e-3Q/9.62](1.1/3.1).

Components: T(.77)=Fx and T(.63)+Fy-mg=0.

Note: Re-work this problem (P.25.5) when get to potential to show how much easier this problem is to do (without vectors!).

P.22.11 (Level 2)

Topic(s): Coulomb’s law, SHM

Answer:
a) 0.5 m
b) 0.0044 N/m. T=13.4 s, \(\omega = 0.47 \text{ rad/s} \) \(\omega^2 = k/m \)
c) no—spring remains the same
d) \(x = 0.675 \text{ m} \)
e) 4.5e-6 C. In equilibrium, \(kx = F = kq_1q_2/r^2 \).

P.22.12 (Level 3)

Topic(s): Coulomb’s law, SHM

Answer:

1.1e-4 C. Set it up so that the amplitude of motion is small so it will be SHM.

\[F_x = \frac{kq_1q_2}{r^2}(x/r) \]

but for small amplitude, \(r \) is essentially constant (=3 m). Then force is a restoring force and from \(T = 7.49 \) s, \(\omega = 0.86 \text{ rad/s} \) so \(kq_1q_2/r^3 = m \omega^2 \).
Set velocity \(= 0 \) for small amplitude oscillations.

\[
F_x = F_c \sin \phi \\
\sin \phi = \frac{x}{r}
\]

\[
F_y = k \frac{Q_1 Q_2}{r^2} \left(\frac{x}{r} \right) \quad r = \sqrt{x^2 + y^2}
\]

If \(y \gg x \), \(r \) is essentially constant so

\[
F_x = \left(k \frac{Q_1 Q_2}{r^3} \right) x
\]

and this is a restoring force.

So

\[
ma = -c x \\
x = x_0 \cos \omega t \\
\omega T = 2\pi
\]

\[
mw^2 = c \\
\sqrt{\frac{c}{m}} = 2\pi / T
\]

\[
T = 7.49
\]

\[
\omega = 0.84
\]

\[
c = mw^2 = 0.074
\]

\[
a = k \frac{Q_1 Q_2}{r^2} \\
\approx 3
\]

\[
0.074 = \frac{9 \times 10^{-9} \cdot Q_1 \cdot Q_2}{2\pi}
\]

\[
Q_1 = 2 \times 10^{-4} \quad \text{so} \quad Q_2 = 1.1 \times 10^{-4} \quad \text{C}
\]
Chapter II.23: Electric Field

Illustrations

Illustration 23.1: What is a vector field?

Topic(s): vector field

Purpose: To introduce a representation of vector fields.

Suggested Use: Input different fields and note the field diagrams. Pick a point in a field and check that the vector points in the correct direction as suggested. Note that the field is for a point charge at the origin.

Illustration 23.2: Force and E-Field due to Point Charges

Topic(s): vector field

Purpose: To demonstrate the electric field for point charges.

Suggested Use: Should discuss superposition. Students should be able to describe the charge distribution simply by looking at the vector fields so they need to develop a way to describe the connection between the charge distribution and the field.

Illustration 23.3: Field Line Representation of Vector Fields

Topic(s): vector field, field lines

Purpose: To compare field line and vector field representations of e-fields.

Suggested Use: Have students carefully compare the vector field and field line representation. Note that the density of lines qualitatively represents the field strength. Also note that the vector field points in a direction tangent to the field vector at any point. This provides a quick connection between typical book diagrams (field lines) and physlets (field lines or vector fields). Configuration B has a net charge of zero (stack all the charges on top of each other).

Illustration 23.4: Practical Uses of Charges and Electric Fields

Topic(s): e-field, force

Purpose: To illustrate uses of electric fields in modern electronics equipment: cathode ray tube (computer screen, TV, oscilloscope) and ink-jet printing.

Suggested Use: Demonstrate how different values of the speed, charge and electric field can control the point of impact on the right wall (screen). If available, show a cathode ray tube from an oscilloscope.

Explorations

Exploration 23.1

Topic(s): e-field

Exploration 23.2

Topic(s): e-field, force
Exploration 23.3
Topic(s): vector field, force
Answers
0.5 C. For E=0.1N/C, equilibrium at (-1.367,-1.7) so mg=Fnsinϕ and qE=Fncosϕ and tanϕ=(2.7/1.367).

Problems

P.23.1 (Level 2)
Topic(s): e-field, vector field
Answer:
 a) 3.9x10^{-10} C. At (0,2), E=.875N/C and E=kQ/r^2.
 b) excess. Vectors point into charge, so negative charge.
 c) 2.4x10^9 electrons

P.23.2 (Level 1)
Topic(s): e-field, field lines
Answer:
 negative

P.23.3 (Level 2)
Topic(s): vector field
Answer:
 I=C; II=B; III=D; IV=A; V=E

P.23.4 (Level 2)
Topic(s): e-field, force
Answer:
 a) Region I, E -y; Regions III & IV, E +y; Region II, E=0. E is opposite direction than F for electron
 b) IV>III=I>II—measure change in y-velocity through the regions

P.23.5 (Level 2)
Topic(s): e-field, force
Answer:
 a) Region I, E -y; Region II & IV, E=+x; Region III, E +y. E is opposite direction than F for electron
 b) II>III>IV=I—measure change in velocity through the regions

P.23.6 (Level 2)
Topic(s): e-field, force
Answer:
\[E = 0.55 \text{ N/C in } +y \]. In time of 1.7 us, \(\Delta y = 0.14 \text{m} \) so \(a_y = 9.7 \times 10^{10} \text{ m/s}^2 \).

\[
\begin{array}{ccc}
 t & x & y \\
 1 & -10.5 & 0 \\
 1.1 & -4.5 & 0 \\
 1.2 & 1.5 & 0 \\
 1.7 & 31.5 & -1 \\
 1.9 & -2.3 & 50 \\
 2.85 & -14 & \\
\end{array}
\]

\[v_x = \frac{\sqrt{v_x^2}}{\mu_5} = 6 \times 10^5 \text{ m/s} \]

\[v_y = \frac{\sqrt{v_y^2}}{\mu_5} = 6 \times 10^5 \text{ m/s} \]

\[v_x = 0 \]

\[v_y = 11 \]

\[t = 1.7 \mu s \]

\[y = v_0y + \frac{1}{2} a_y t^2 \]

\[a_y = 9.7 \times 10^{10} \text{ m/s}^2 \]

\[v_{\text{max}} = \frac{qE}{m} \]

\[v = \frac{q}{m} \]

\[q = 1.6 \times 10^{-19} \text{ C} \]

\[m = 9.1 \times 10^{-31} \text{ kg} \]

\[E = \frac{(9.1 \times 10^{-31})(9.7 \times 10^{10})}{1.6 \times 10^{17}} = 0.55 \text{ N/C} \]

P.23.7 (Level 2)

Topic(s): e-field, force

Answer:

a) \(F \)

b) \(E = 2.4 \text{ N/C} \) In time of 0.5 us, \(\Delta v_y = 15 \text{cm/us} = 150 \text{km/s} \) and \(\Delta v_y = 15 \text{cm/us} \) so \(|a| = 4.2 \times 10^{11} \text{m/s}^2 \).

P.23.8 (Level 2)

Topic(s): e-field

Answer:

2nC.

P.23.9 (Level 3)

Topic(s): e-field, charge distribution

Answer:
$E = Q \times 0.0895$. The electric field from two right-hand charges cancels out as does the y-component of the electric field from the two charges on the left. One charge: $|E| = kQ/(12^2 + 6^2)$ so $E_x = kQ/(180) \times 12/(180)^{1/2}$ for one of the left-hand charges.

P.23.10 (Level 3, calculus)

Topic(s): charge distribution

Answer:

a) $Q = 9e^{-4} C; E = (kQ/8)[1/x - 1/(8+x)]$. dE = $(kQ/L)\text{dx}/(x+x_1)^2$ where L is the length of the rod and x_1 is the distance from the origin to the test charge and the limits of integration are 0 to L.

b) $Q = 9e^{-4} C; E = (kQ/y)1/(16+y^2)^{1/2}$. The y-component of field is $dE_y = (kQ/L)[\text{dx}/(x^2+y^2)]y/(x^2+y^2)^{3/2}$ and integration is from $-L/2$ to $L/2$ (this integral is not trivial substitution—students should probably simply use an integral table or a mathematics package.)
Instructors Guide for *Physlet® Physics*
Anne J. Cox and Melissa H. Dancy

a.

\[dE = k \left(\frac{Q \xi}{L} \right) \frac{dx}{(a + x)^2} \]

Length of rod:

\[\text{Charged rod:} \quad \frac{d\xi}{dx} = \frac{Q}{L} \]

\[E = k \left(\frac{Q \xi}{L} \right) \int_0^L \frac{dx}{(a + x)^2} \quad u = a + x \]

\[du = dx \]

\[E = k \left(\frac{Q \xi}{L} \right) \left[\frac{1}{a + x} \right]_0^L = -k \left(\frac{Q \xi}{L} \right) \left(\frac{1}{a} - \frac{1}{a + L} \right) \]

\[E = k \left(\frac{Q \xi}{L} \right) \left(\frac{1}{a} - \frac{1}{a + L} \right) \]

\[F = qE \]

\[A = \text{a}, \quad F = 1.7 \times 10^6 \text{ N} \]

\[E(a = 4) = \frac{1.7 \times 10^6}{10 \times 10^{-6}} = (9 \times 10^9) \left(\frac{\frac{1}{a} - \frac{1}{a + L}}{10 \times 10^{-6}} \right) \]

\[Q = 9 \times 10^{-9} \text{ C} \]

b.

Net field in y-direction.

\[dE_y = k \left(\frac{Q \xi}{L} \right) \frac{dx}{(x^2 + a^2)^{3/2}} \sin \theta \]

\[\sin \theta = \frac{x}{\sqrt{x^2 + a^2}} \]

\[E_y = k \left(\frac{Q \xi}{L} \right) \int_{-a}^a \frac{x}{\sqrt{x^2 + a^2}} dx \]

\[E_y = k \left(\frac{Q \xi}{L} \right) \left[\frac{\sqrt{x^2 + a^2}}{x} \right]_{-a}^a \]

\[E_y = k \left(\frac{Q \xi}{L} \right) \left[\frac{a}{\sqrt{a^2 + a^2}} + \frac{a}{\sqrt{a^2 + a^2}} \right] \]

\[E_y = k \left(\frac{Q \xi}{L} \right) \left[\frac{1}{\sqrt{2a^2}} + \frac{1}{\sqrt{2a^2}} \right] \]

\[\Lambda = \frac{a}{4}, \quad F = 3.56 \times 10^6 \text{ N} \]

\[\frac{3.56 \times 10^6}{10 \times 10^{-6}} = k \left(\frac{Q \xi}{L} \right) \left[\frac{1}{\sqrt{2}a} \right] \]

\[Q = 9 \times 10^{-9} \text{ C} \]

168
Chapter II.24: Gauss’s Law

Illustrations

Illustration 24.1: Flux and Gaussian Surfaces
Topic(s): flux
Purpose: To make the connection between flux and charge enclosed by Gaussian surface.
Suggested Use: Explore the flux through the different size and shaped surfaces (remind students that Gaussian surfaces are 3-D and what they see are 2-D representations). Can begin to make the case that Gauss’s law is always true, but not always useful in calculating the electric field.

Illustration 24.2: Symmetry
Topic(s): symmetry
Purpose: To explore choices of Gaussian surfaces.
Suggested Use: Demonstrate that Gauss’s law can be used to calculate the electric field in the “near view” and “far view” case, but not in the “intermediate view” because of the symmetry (relation of Gaussian surface to electric field). Can also demonstrate the connection between flux and charge enclosed by noting how the flux changes as the box is moved through the filament in the near view.

Illustration 24.3: Cylinder of Charge
Topic(s): symmetry
Purpose: To compare cases of symmetry with ones with broken symmetry.
Suggested Use: Have students carefully compare the electric fields for one charged rod with half a cylinder and a complete cylinder. Have them propose Gaussian surfaces for those cases and discuss which ones would allow them to calculate the electric field.

Explorations

Exploration 24.1
Topic(s): flux, gauss’s law
Worksheets:
Flux=352 Nm². q=3.1e-9C.

Exploration 24.2
Topic(s): gauss’s law, symmetry
Worksheets:

Exploration 24.3
Topic(s): gauss’s law, charge distribution
Worksheets:
Q=1nC
Exploration 24.4
Topic(s): gauss’s law
Worksheets:
Point charge: \(E = kQ/r^2 \) (configuration 1); Cylinder: \(E = k2\lambda/r \) (configuration 2).

Problems

P.24.1 (Level 1)
Topic(s): flux
Answer:
1) \(a > d > e > b > c \)
2) \(a > e > d > c > b \)
3) \(a > d > c > e > b \)

P.24.2 (Level 1)
Topic(s): flux
Answer:
\(e < c < a < b < d \)

P.24.3 (Level 1)
Topic(s): flux
Answer:
Negative charge with charge density increasing radially out from origin.

P.24.4 (Level 1)
Topic(s): flux, charge distribution
Answer:
Center region of negative charge (r about .1); surrounded by positive charge (decreasing radially) out to r about 1); small net positive charge (of 1 mC).

P.24.5 (Level 1, calculus)
Topic(s): flux
Answer:
Flux=0 both configurations.

P.24.6 (Level 2, calculus)
Topic(s): flux
Answer:
Configuration 1: total flux=0=top=bottom; right=.82 Nm²/C=left.
Configuration 2: 0=top=bottom; right=.82 Nm²/C=left (net flux=1.6 Nm²/C).
P.24.7 (Level 1)

Topic(s): symmetry

Answer:
Top is positive; bottom negative; cube (or cylinder) with one side between plates and one side above (or below plates).

P.24.8 (Level 2, calculus)

Topic(s): symmetry, Gauss’s law

Answer:

a) **point or line charge** = net charge at center (or at x=1,y=0 for Configuration 1).

b) **Configuration 1:** E=0.8/r. **Configuration 2:** E=1.5/r². **Configuration 3:** E=0.

Configuration 4: E=4/r. In all cases, measure E, double radius and measure E to find out if line charge (~1/r) or point charge (~1/r²) (line or point charge) and then find constant of proportionality.

P.24.9 (Level 2, calculus)

Topic(s): symmetry, Gauss’s law, charge distribution

Answer:
Left: line of charge; right: charged plate. Left: near charges, field drops off as 1/r and on right field does not drop much.

P.24.10 (Level 2, calculus)

Topic(s): charge distribution, Gauss’s law

Answer:

b) \(\lambda = 1.1 \times 10^{-11} \text{ C/m} \). \(E = -2k(\text{charge/length})/r \) inside; \(E = 0 \) outside.

\(E = -\frac{2k \lambda}{r} \) inside; \(E = 0 \) outside.

\(\lambda = \frac{\text{charge}}{\text{length}} \)

Gaussian surface

\[\oint \vec{E} \cdot d\hat{A} = \frac{q_{\text{enclosed}}}{\varepsilon_0} \]

on “caps” of cylinder:

\[\oint d\hat{A} = 0 \]

\[\vec{E} \cdot d\hat{A} = E d\hat{A} \cos \theta = E d\hat{A} \]

At all points of the curved cylindrical surface, the electric field points in the same direction as

so \(\vec{E} \cdot d\hat{A} = E d\hat{A} \cos \theta = E d\hat{A} \)

also \(\left| \vec{E} \right| = \text{same at all points on the curved surface} \)

so \(\oint \vec{E} \cdot d\hat{A} = \oint E d\hat{A} = E \oint d\hat{A} = E A \)

\(A = 2\pi r \hat{h} \)

\(\oint \vec{E} \cdot d\hat{A} = q_{\text{enclosed}}/\varepsilon_0 \)

\(\oint \vec{E} \cdot d\hat{A} = \frac{q_{\text{enclosed}}}{\varepsilon_0} \)

so \(\oint \vec{E} \cdot d\hat{A} \) gives

\[E \cdot 2\pi r \hat{h} = \lambda \frac{\varepsilon_0}{r} \]

\(E \cdot 2\pi r \hat{h} = \lambda \frac{\varepsilon_0}{r} \)

\(E = \frac{\lambda}{2\pi r} \hat{r} \)

\(E = \frac{\lambda}{2\pi r} \hat{r} \)

\(E = 40 \text{ N/C} \)

\(40 = \frac{\lambda}{2\pi \varepsilon_0} \)

\(\lambda = 1.1 \times 10^{-11} \text{ C/m} \)
P.24.11 (Level 1, calculus)

Topic(s): charge distribution, Gauss’s law

Answer:

\[\sigma = 2.5 \times 10^{-11} \text{ C/m}^2. \quad E = 5.6 - 5.8 \text{ N/C}. \]

P.24.12 (Level 3, calculus)

Topic(s): charge distribution, Gauss’s law

Answer:

a) **Animation 1:** uniformly charged sphere. **Animation 2:** conducting sphere.

b) **Animation 1:** \(E_{\text{outside}} = \frac{300}{4\pi r^2} \). \(E_{\text{inside}} = \frac{2.4r}{4\pi}. \) Find that flux varies as \(t^3 \) (at \(t = 2 \) flux = 19.4 and at \(t = 4 \), flux = 155) so charge \(\sim r^3 \) inside.

Animation 2: \(E_{\text{outside}} = \frac{300}{4\pi r^2}. \) \(E = 0 \) inside.
Chapter II.25: Electric Potential

Illustrations

Illustration 25.1: Energy and Voltage
Topic(s): work, energy, voltage
Purpose: To help students make connections between work, potential energy, kinetic energy and electrostatic potential (voltage).
Suggested Use: Demonstrate the ways you can increase and decrease the potential and kinetic energy of the particle. Have students find the (arbitrary) point of PE=0 (middle in this case). Students should recognize that the total energy is arbitrary and so what we are interested in is the change in energy. Extensions: Have students find the voltage difference between the two plates is (10V) and/or calculate work done.

Illustration 25.2: Work and Equipotential Surfaces
Topic(s): equipotential surfaces, work, voltage
Purpose: To explore equipotential surfaces.
Suggested Use: Move the test charge and note the work required to move along an equipotential contour (0) and between contours. Students should be able to identify the charge distribution (3 positive; 1 negative). Note the direction of electric field (from force vector) in relation to contours. Extension: Have students calculate the charge of the test charge (given the work and voltage).

Illustration 25.3: Potential of Point Charges
Topic(s): voltage, equipotential surfaces, charge distributions
Purpose: To compare equipotential surfaces for different charge distributions.
Suggested Use: Change the value of the charge and note the differences in the contours. Add the third (dragable) charge and note the contours. Have students develop a technique for determining relative size of charges from contour maps.

Illustration 25.4: Conservative Forces
Topic(s): work, potential
Purpose: To compare conservative and non-conservative forces.
Suggested Use: Compare the work done to go along different paths from one point to another to determine which one is a conservative force (Force 1). Using the questions in the illustration, have students develop an explanation for why a conservative force is required in order to develop a potential associated with the force.

Explorations

Exploration 25.1
Topic(s): equipotential surfaces, field vectors
Exploration 25.2
Topic(s): equipotential surfaces, field vectors

Exploration 25.3
Topic(s): equipotential surfaces, conductors

Exploration 25.4
Topic(s): voltage, energy
Note: Suggested calculation ignores the time required to accelerate particles into the field free region (but the time is short enough that this is negligible).

Exploration 25.5
Topic(s): voltage, charge distribution, conductors
Note: calculus required for parts (c) & (d).

Problems

P.25.1 (Level 2)
Topic(s): voltage, energy
Answer:
Animation 1) PE increases; higher V at beginning; could be the field
Animation 2) PE increases; higher V at end; external force to left=qE (after initial start)
Animation 3) PE increases; higher V at beginning; external force=qE to right (after initial start)
Animation 4) PE decreases; higher V at end; could be the field
Animation 5) PE same; V same; F=qE to right to keep along path (initial F to start motion)

P.25.2 (Level 1)
Topic(s): work, equipotential surfaces
Answer:
0 J (on same equipotential)

P.25.3 (Level 1)
Topic(s): work, equipotential surfaces
Answer:
4=5>1>2=3.

P.25.4 (Level 2)
Topic(s): voltage
Answer:
a) $10 \times 10^{-10} \text{ C}$
b) $-5 \times 10^{-10} \text{ C}$
c) $5 \times 10^{-10} \text{ C}$

P.25.5 (Level 2)

Topic(s): voltage, energy
Answer:
10^{-6} kg. Start at rest at left of field and then record velocity as it leaves the field.
$rac{1}{2}mv^2 = qV$.

P.25.6 (Level 1)

Topic(s): voltage, electric field, energy
Answer:
Animations 1-3: voltage linearly increases in +x direction; electric field is constant and points in +x direction.

Animation 1:

<table>
<thead>
<tr>
<th>t</th>
<th>$\frac{V}{x}$</th>
<th>a</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Constant acceleration:

\[
\frac{1}{2} \frac{1}{a} \frac{1}{v^2} = 2 \text{ m/s}^2
\]

Therefore, force (and electric field) are constant as well.

Change initial starting position and find same force position anywhere on x-axis.

Constant electric field implies linearly increasing potential (think of constant gravitational force (close to the Earth's surface) = mg and associated potential = mg'y

Note: where $V=0$ is arbitrary

Animation 2: The acceleration is the same. Only the initial condition is different (initial velocity is not equal to zero). So the plots are the same.

Animation 3: same as above.

P.25.7 (Level 1)

Topic(s): voltage, energy, equipotential surfaces
Answer:
Animation 4

P.25.8 (Level 2)
Topic(s): voltage, electric field, equipotential surfaces, conductors
Answer:
 a) 3>2>1
 b) 3>1>2
 c) 2>1>3>4

P.25.9 (Level 2)
Topic(s): voltage, electric field, charge distribution
Answer:
 a) \(V = \frac{kQ}{2} \).
 b) \(E = 0 \) at midpoint.
 c) \(V \) is not zero (\(V = 0 \) is infinity or some other arbitrary reference point).

P.25.10 (Level 3)
Topic(s): voltage, energy
Answer:
 \(Q = 1 \times 10^{-7} \) C. At equilibrium (set vel=0 until stops moving) change in gravitational PE (mgh) equals change in electrostatic PE (qQk/r). When black charge is at \(x = 2 \), equilibrium is (-1.7, -1.5) so \(r = 3.7 \) between the two. When black charge is at \(x = .575 \), equilibrium is (-2.325, -.925) so \(r = 3.1 \).

Note: Same problem as Problem 22.10, but easier to do from energy point of view.
P.25.11 (Level 2)

Topic(s): voltage, conductors, charge distribution

Answer:

\[Q = 6.7 \times 10^{-12} \text{ C} \]

P.25.12 (Level 3, calculus)

Topic(s): charge distribution, voltage

Answer:

Cylinder. For sphere: \(V = kQ(1/r - 1/R) \) where \(R \) is the distance to outer ring; \(Q = 1.4 \times 10^{-11} \text{ C} \). Cylinder: \(V = 2k\lambda \ln(R/r); \lambda = 3.7 \times 10^{-9} \text{ C/m} \). Checking voltage values (\(x=0, y=2, V=5.3 \) and \(x=0, y=4, V=0.9 \), matches co-centric cylinder equation.)
a. \textbf{Sphere:}

\[
\mathbf{E} = k \frac{Q}{r^2} \hat{r} \\
V = -\int_A^{r} E \cdot \hat{r} dr = -k \int_A^{r} \frac{Q}{r^2} dr = -kQ \left(\frac{1}{r^2} - \frac{1}{r} \right) \bigg|_A^r
\]

when \(r = B \), \(V = 10 \) \(\rightarrow \)

\[10 = kQ \left(\frac{1}{B} - \frac{1}{A} \right)\]

\(A = 0.45 \text{ m}, \ B = 0.61 \text{ m} \)

\[10 = kQ \left(\frac{1}{0.61} - \frac{1}{0.45} \right)\]

\[Q = 1.4 \times 10^{-10} \text{ C}\]

b. \textbf{Cylinder:}

\[
\mathbf{E} = 2k \frac{Q}{r} \hat{r} \\
V = -\int_A^{r} E \cdot \hat{r} dr = -\int_A^{r} 2k \frac{Q}{r} dr = -2kQ \ln r \bigg|_A^r
\]

when \(r = B \), \(V = 10 \) \(\rightarrow \)

\[10 = 2kQ \ln \frac{A}{B} = 2kQ \ln \left(\frac{0.45}{0.61} \right)\]

\[\lambda = 3.7 \times 10^{-10} \text{ C}\]

c. \textbf{Cylinders or Spheres?}

- \underline{Cylinder:} \(r = 2 \) \(\rightarrow \) \(V = 2kQ \ln \frac{A}{2} \)
 \(\rightarrow \) \(V = 5.4 \)
- \underline{Sphere:} \(r = 2 \) \(\rightarrow \) \(V = kQ \left(\frac{1}{B^2} - \frac{1}{A^2} \right) = 3.5 \)
 \(\rightarrow \) \(V = 3.5 \)

\textbf{Measured values:}

\(k = 0, \ g = 2, \ V = 5.3 \)

\(k = 0, \ g = 4, \ V = 0.9 \)
Chapter II.26: Capacitance and Dielectrics

Illustrations

Illustration 26.1: Microscopic View of Capacitor

Topic(s): capacitance, dielectrics, electric field

Purpose: To provide a model microscopic view of what happens in a capacitor.

Suggested Use: Demonstrate the microscopic model. From looking at the model, students should be able to develop the idea that addition of a dielectric (bound charges here in comparison with the conductor where the charges can separate) decreases the net electric field so battery with dielectric is a smaller battery (smaller V).

Illustration 26.2: Capacitor Connected to a Battery

Topic(s): capacitance, equipotential surfaces, voltage, electric field

Purpose: To connect electric fields with capacitor parameters.

Suggested Use: With increasing plate separation (as students drag the red plate) and/or reduced voltage, students should quickly see that the electric field is reduced. Students should be able to see this on both the vector field plot and the equipotential contours. Students should begin to understand what happens to charges (and why it happens) on the plates as these parameters change.

Illustration 26.3: Capacitor with Dielectric

Topic(s): capacitance, dielectrics, equipotential surfaces, voltage, electric field

Purpose: To illustrate the effect of dielectrics within capacitors.

Suggested Use: Students should observe (and describe) what happens to both the electric field and the equipotential contours when the dielectric moves in and out of the region between the plates. Students should be able to predict what will happen if the dielectric constant is changed. Note the increase in the charges on the plates near the dielectric. Have students identify the location of the largest electric fields (between dielectric and plate) and explain why the field is so large at that point.

Illustration 26.4: Capacitors in Parallel and in Series

Topic(s): capacitance, voltage

Purpose: To provide a microscopic view of parallel and series capacitors.

Suggested Use: Use the different configurations to illustrate that the potential across parallel capacitor is the same while the charge on series capacitors is the same. This can lead naturally into the series and parallel equivalent capacitor circuits equations.

Explorations

Exploration 26.1

Topic(s): equipotential surfaces, capacitance, energy

a) V=20V; A=0.18m^2; b) W>0 to push together; c) U~1/d.
Exploration 26.2
Topic(s): capacitance, voltage

Exploration 26.3
Topic(s): capacitance, dielectrics, conductors, equipotential surfaces

Exploration 26.4
Topic(s): capacitance, equivalent capacitance

Exploration 26.5
Topic(s): voltage, charge distribution, capacitance, gauss’s law
Note: calculus required.

Problems

P.26.1 (Level 1)
Topic(s): capacitance
Answer:
Animations 1, 3 & 4

P.26.2 (Level 1)
Topic(s): capacitance, field vectors
Answer:
a) positive
b) negative
c) charges only on surfaces—most on surface facing other plate (a few charges on surface facing outside).
d) 9-10V. V=Ed, d=3 and E=3.13

P.26.3 (Level 2)
Topic(s): capacitance, energy
Answer:
Not connected to battery. U=CV^2/2=Q^2/(2C); here U~1/A so Q is constant, not V.

P.26.4 (Level 1)
Topic(s): capacitance, dielectric, equipotential surfaces
Answer:
P.26.5 (Level 2)
Topic(s): dielectric
Answer:
 C>A>B. Smallest electric field, largest dielectric.

P.26.6 (Level 2)
Topic(s): dielectric, equipotential surfaces
Answer:
 A>C>B.

P.26.7 (Level 1)
Topic(s): capacitance, dielectric
Answer:
 Animation 1: connected to battery
 Animation 2: not connected to a battery (constant Q)

P.26.8 (Level 2)
Topic(s): dielectric, capacitance, electric field
Answer:
 Dielectric constant=8. Ratio of electric fields outside and within dielectric.

P.26.9 (Level 1)
Topic(s): capacitance, equivalent capacitance
Answer:
 a) Capacitor on right has bigger capacitance.
 b) Both have same V.
 c) One on right has bigger E.

P.26.10 (Level 2)
Topic(s): capacitance, equivalent capacitance
Answer:
 Battery of series circuit is larger. Use V=Q/C and Q single=10; Q series=6-7 (for each).
P.26.11 (Level 3)

Topic(s): capacitance, equivalent capacitance

Answer:

The voltage across C should be biggest when both switches are closed.

Both switches closed:

\[V_C = 9.14 \text{ V} \quad V_A = V_B = 0.8 \mu \text{V} \]

One switch open, one closed:

\[V_C = 5.71 \text{ V} \quad V_A = 4.29 \text{ V} \quad V_C = 9.52 \text{ V} \quad V_B = 0.48 \text{ V} \]

With one switch open and one closed, the charge on capacitor C and the other capacitor must

\[
\begin{align*}
Q_C &= CV_A = 5.71 \times 10^{-3} \times 1.3 \times 10^{-5} = 7.5 \times 10^{-8} \mu \text{C} = Q_B \\
Q_C &= CV_B = 9.52 \times 10^{-5} \times 2 \times 10^{-4} = 1.9 \times 10^{-8} \mu \text{C} = Q_B
\end{align*}
\]

Further, when capacitors A and B are in series, their total capacitance adds. This means that when both switches are closed, the equivalent capacitance is greater so that the charge stored should be greater as well and the voltage across capacitor C should be the biggest of all the configurations with the switches (and it is NOT).

\[
\begin{align*}
C_{AB} &= C_A + C_B \\
C_{AB} &= 5 \times 10^{-5} + 10^{-5} = 6 \times 10^{-5} \\
C_{eq} &= \left(\frac{1}{C_A} + \frac{1}{C_{AB}}\right)^{-1} = 9.5 \times 10^{-6} \\
Q_C &= CV = 9.5 \times 10^{-5} \\
\Rightarrow \quad V_C &= \frac{Q_c}{C_{eq}} = 9.55 \text{ V} \\
\text{and} \quad V_{AB} &= 0.45 \text{ V}
\end{align*}
\]

which does not agree with the animation. So the animation does not correctly show the voltages across the capacitors.
P.26.12 (Level 3, calculus)

Topic(s): charge distribution, voltage

Answer:

a) \(V = kQ \left(\frac{1}{a} - \frac{1}{b} \right) \) so \(Q = V / \left(k \left(\frac{1}{a} - \frac{1}{b} \right) \right) \) where \(b \) is the outer radius and \(a \) is the inner sphere radius.

b) \(C = Q / V = 1 / \left(k \left(\frac{1}{a} - \frac{1}{b} \right) \right) \) so as \(b \) increases, \(C \) decreases (as expected) until \(C = a / k \).

\[\begin{align*}
\vec{E} &= kQ \nabla \phi \quad \nabla \cdot \vec{E} = \rho = \text{charge density} \\
\phi &= -\int_{B}^{A} kQ \vec{r} \cdot d\vec{r} = \left. \left. kQ \frac{\vec{r}}{r} \right|_{A}^{B} \right. \\
&= kQ \left(\frac{1}{B} - \frac{1}{A} \right) \\
B &= 2 \text{ cm} = 0.02 \text{ m} \\
A &= 9.6 \text{ cm} = 0.096 \text{ m} \\
\delta \phi &= kQ \left(\frac{1}{B} - \frac{1}{A} \right) \\
Q &= 1.4 \times 10^{-10} = 140 \text{ nC} \\
Q &= \left(\frac{V}{k} \right) \left(\frac{B A}{A - B} \right) = 1.1 \times 10^{-10} \frac{A}{(a - 0.02)} \\
Q(R) &= 1.1 \times 10^{-10} \frac{R}{(R - 0.02)} \quad (R \text{ in meters}) \\
C &= \left[\frac{k}{Q} \frac{1}{\left(\frac{1}{B} - \frac{1}{A} \right) \left(\frac{B A}{A - B} \right)} \right] \\
&= \frac{1}{k} \frac{B A}{A - B} \\
C &= 2.2 \times 10^{-12} \frac{R}{(R - 0.02)} \\
\text{as the radius increases, the capacitance decreases which agrees with the animation since the voltage is constant but the charge stored decreases with increasing radius.} \end{align*} \]
Chapter II.27: Magnetic Fields and Forces

Illustrations

Illustration 27.1: Magnets and Compass Needles
Topic(s): magnets, magnetic field
Purpose: To connect permanent magnets with magnetic field vectors and compasses.
Suggested Use: Demonstrate how the compass maps out the magnetic field. Try a variety of permanent magnet configurations: have students predict the field first and then build it. Try, for example, making a “horseshoe” magnet:

Illustration 27.2: Earth's Magnetic Field
Topic(s): magnets, magnetic field
Purpose: To demonstrate the Earth’s magnetic field.
Suggested Use: Students should use the “compass” to map the magnetic field and find that the geographic “north pole” is really a magnetic “south pole.”

Illustration 27.3: The Mass Spectrometer
Topic(s): Lorentz force
Purpose: To demonstrate an application of magnetic forces on charged particles.
Suggested Use: After students predict what should happen when B=0 and when E=0, set E=vB so that the particles are “selected.” Students should be able to predict what will happen as the charge and mass are changed. Pick a charge and mass and have students predict different values of charge and mass that end in collision at the same spot (q/m the same).

Illustration 27.4: Magnetic Forces on Currents
Topic(s): Lorentz force
Purpose: To show the magnetic force on the current carriers in a wire.
Suggested Use: Have students use qvxB to predict the forces on the moving electrons and check their predictions with the animation. From here it is fairly easy for students to make predictions about force on wires in magnetic fields (for example, try a demonstration of a bar magnet next to a freely hanging wire carrying a couple amps of current (short-circuit a rechargeable D-cell battery).

Illustration 27.5: Permanent Magnets, Ferromagnetism
Topic(s): magnets
Purpose: To demonstrate a simplified model of ferromagnetism.
Suggested Use: Discuss magnetization and how ferromagnetic materials retain their magnetization even when the external field is zero. Also discuss the impact of increasing the temperature of ferromagnetic materials (when ferromagnetic materials reach their Curie point, they are no longer magnetized).

Explorations

Exploration 27.1
Topic(s): magnetic field, Lorentz force

Exploration 27.2
Topic(s): Lorentz force
20x100m/s

Exploration 27.3
Topic(s): Lorentz force
a) E=25N/C; d) m=qB²R/E

Problems

P.27.1 (Level 1)
Topic(s): magnets
Answer:
 Green: south pole; Yellow: north pole

P.27.2 (Level 1)
Topic(s): magnetic field
Answer:
 Configuration 3.

P.27.3 (Level 2)
Topic(s): Lorentz force
Answer:
 Animation 2. F=0 (B-field in –x and velocity in +x directions)

P.27.4 (Level 1)
Topic(s): Lorentz force, current
Answer:
 Configuration 1: current to left B out of screen
 Configuration 2: current to left, B out of screen

P.27.5 (Level 2)
Topic(s): magnet, Lorentz force
Answer:
 a) Green: south pole; Blue: north pole.
b) Animation 1

P.27.6 (Level 3)

Topic(s): Lorentz force

Answer:

a) I into screen; II 0; III=IV out of screen

b) III=IV > I > II

c) same shape, just curves up first (would look like running the animation in reverse)

d) decrease speed: \(R = \frac{mv}{qB} \) and for smaller \(R \), decrease \(v \).
Instructors Guide for *Physlet Physics*
Anne J. Cox and Melissa H. Dancy

P.27.7 (Level 3)

Topic(s): Lorentz force

Answer:

a) magenta = red (120 cm/s) > yellow = blue = green (60 cm/s) > cyan (30 cm/s)

b) \(|v|\) constant
c) cyan = yellow (-6 mC) < magenta (0) < blue = red (6 mC) < green (12 mC)

d) \(B = 0.83 \, T \)

<table>
<thead>
<tr>
<th>a.</th>
<th>magenta and red arrive first so have highest speeds; then blue, yellow and green arrive with the next highest speeds; finally, the slowest one — cyan arrives.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{Speed: \quad \text{magenta} > \text{red} > \text{blue} > \text{yellow} > \text{green} > \text{cyan}})</td>
</tr>
<tr>
<td></td>
<td>(v_i = \frac{\Delta x}{\Delta t} = \frac{120 \text{ cm}}{50 \text{ s}} = 2.4 \text{ cm/s} \quad v_i = \frac{60 \text{ cm}}{60 \text{ s}} = 1 \text{ cm/s} \quad v_i = \frac{30 \text{ cm}}{45 \text{ s}} = 0.67 \text{ cm/s})</td>
</tr>
</tbody>
</table>

b. \(\text{IV} \) stays the same (uniform circular motion)

c. \(\vec{F} = q \vec{v} \times \vec{B} = m \vec{a} \quad q \vec{v} \times \vec{B} = m \frac{v^2}{R} \quad q \vec{v} = \left(\frac{m v}{q} \right) \vec{R} \)

Blue: \(R = 4.0 \text{ cm} \quad q = 6 \text{ e mC} \)

Green: \(R = 3.0 \text{ cm} \quad v \text{ same so } q > 6 \text{ e mC}; q > 12 \text{ mC} \)

Yellow: \(R = 4.0 \text{ cm} \quad q = -6 \text{ e mC} \)

Magenta: \(q = 0 \)

Red: \(R = 12.0 \text{ cm} \quad \text{speed} = 2 \times (\text{speed of blue}) \approx 120 \text{ cm/s} \quad \text{so in comparison with blue, } 2V \text{ and } 2R \text{ so} \quad q \text{ red} = 6 \text{ e mC} \)

Cyan: \(R = 3.0 \text{ cm} \quad \text{speed} = \frac{1}{2} (\text{speed of blue}) = 30 \text{ cm/s} \quad \text{so in comparison with blue, } \frac{1}{2} V \text{ and } \frac{1}{2} R \text{ so } \quad q = -6 \text{ e mC} \)

Charge (lowest -> highest):

\(\text{cyan} = \text{yellow} < \text{magenta} < \text{blue} = \text{red} < \text{green} \)

d. \(\text{blue \rightarrow \vec{V} \rightarrow \vec{B} \text{ into screen: } \vec{F} \downarrow} \quad \text{\(\vec{B} \text{ out of screen: } \vec{F} \uparrow \) } \)

\(q \vec{v} \times \vec{B} = m \frac{v^2}{R} \quad \vec{B} = \frac{m}{q} \frac{v}{R} \quad \text{blue: } m = 0.005 \quad q = 6 \times 10^{-2} \text{ e mC} \quad v = 0.6 \text{ m/s} \quad R = 0.6 \text{ cm} \)

\(B = \left(\frac{6 \times 10^{-2} \text{ e mC} \cdot 0.6 \text{ m/s}}{0.6 \text{ cm}} \right) = 0.83 \text{T} \)

P.27.8 (Level 2)

Topic(s): Lorentz force

Answer:

a) **negative charge** (curves in B-field)
b) 2 T. E=vB, v=40m/s
c) 2 C/kg. q/m=v/RB, R=10m.

P.27.9 (Level 2)
Topic(s): Lorentz force
Answer:
 a) positive
 b) 37.5 V/m. E-field only: a_y=5000m/s^2, ma=qE.
 c) 0.75 T. vB=E or B-field only: a=4970m/s^2 (measure changes in vx and vy) and use ma=qvB.
 d) 2.25 V. V=Ed and d=.06m.

P.27.10 (Level 2)
Topic(s): Lorentz force
Answer:
 a) left.
 b) m=1 kg. F_{mag}=ILB as F_{mag} increases, F_{measured} decreases: F_{mag} up. Mg- F_{mag} = F_{measured}.

```
B is out of page: F_B + F_T (increase B, F_T is less)  
mg

a. Direction of current? F = I x B  
F = \vec{I} \times \vec{B}  
\vec{F}  
\vec{F}  
\vec{I}

Current flows to left.

b. Mass of rod:  
B = 2 T  
F_T = 9.48N  
I = 2A  
L = 7.2 x 2 = 14.4 cm = 0.144m  
|F_B| = (2)(0.144)(2) = 0.576  
0.576 + 9.43 = m(9.8)  
m = 1.02 kg
```

Checking: B = 3T, I = 5A,
F_T = 7.84N
F_B + F_T = 10.02
m = 1.02 kg
Chapter II.28: Ampere's Law

Illustrations

Illustration 28.1: Fields from Wires and Loops

Topic(s): current, magnetic field
Purpose: To show the magnetic fields from a variety of current carrying wires.
Suggested Use: After looking at the magnetic field from one wire, have students make predictions about the field from the different configurations. Students should be able to use a right-hand rule to find the direction of the magnetic field near a wire. Note that the convention is that red means current out of the screen and blue means current into the screen.

Illustration 28.2: Forces between Wires

Topic(s): Lorentz force, magnetic field
Purpose: To demonstrate the forces between wires.
Suggested Use: Have students use $ILxB$ to predict the forces on the wires and check their predictions with the animation. Students should also be able to determine which direction current is flowing in the center wire and recognize that the forces shown do constitute a Newton’s 3rd law force pair.

Illustration 28.3: Ampere's Law and Symmetry

Topic(s): symmetry, magnetic field, Ampere’s law
Purpose: To demonstrate symmetries useful for Ampere’s law.
Suggested Use: Compare the symmetry present in the single wire and two wire cases. At far enough distances away, the two wire case can be approximated by a single wire carrying the same total current. Have students explain what “far away” is for different spacing between the wires.

Illustration 28.4: Path Integral

Topic(s): Ampere’s law
Purpose: To demonstrate Ampere’s law.
Suggested Use: Students should trace different closed loops around the current carrying wires (and around regions where there is no current) to verify Ampere’s law. This Illustration can really help students “visualize” a path integral as it calculates the path integral for the dragging mouse. Extension: Have students calculate the current in the wires (magnitude=1A).

Explorations

Exploration 28.1

Topic(s): Ampere’s law
Exploration 28.2

Topic(s): Ampere’s law, symmetry

Exploration 28.3

Topic(s): Lorentz force, magnetic fields

Problems

P.28.1 (Level 1)

Topic(s): Lorentz force

Answer:

a) 2

b) 1

P.28.2 (Level 2)

Topic(s): magnetic field

Answer:

\[y = \frac{2}{3} I \]

One red wire: \(|B| = \frac{\mu_0 I}{(2\pi 2\sqrt{2})} \) so \(B_x = |\mu_0 I/(2\pi 2\sqrt{2})\cos 45^\circ| \); both wires \(B_{\text{net}} = \frac{\mu_0 3}{4\pi}\).

With Black wire, to get zero magnetic field at the origin, put it on the y-axis.
P.28.3 (Level 2, calculus)
Topic(s): Ampere’s law
Answer:
Pink=10A into screen; Yellow=10A out of screen; Green=5A out of screen; Cyan=15A into screen.

P.28.4 (Level 1, calculus)
Topic(s): Ampere’s law
Answer:
(a) top=20x10^{-6} Tm, bottom=-20x10^{-6} Tm, sides=0
(b) 0, no current inside box

P.28.5 (Level 2)
Topic(s): Ampere’s law
Answer:
(a) no external magnetic fields
(b) symmetry and current enclosed equals zero
(c) I=0.1 A

P.28.6 (Level 2)
Topic(s): Lorentz force
Answer:
0.7A. current off: at y=2cm, x=0, B=4.97x10^{-5} T. Current on: F=3.5x10^{-5} at same position. Use F=ILxB so F/L=IB.

P.28.7 (Level 2, calculus)
Topic(s): Ampere’s law
Answer:
(a) out of the screen.
(b) 25A. Outside the wire, use B=\mu_0l/2\pi r.

P.28.8 (Level 3, calculus)
Topic(s): Ampere’s law
Answer:
(a) 0.
(b) 6 A/cm. Plate is in uniform field: current from plate creates 0.38 above (adds to external field) and 0.38 beneath (subtracts from external field) so find current/length to create B=0.38mT: 2BL=\mu_0KL where K=current/meter.

P.28.9 (Level 3, calculus)
Topic(s): Ampere’s law
Answer:
(a) Integral is zero for all sides except top. For I=2.526, current enclosed=83.8A; I/cm=33.5 A/cm.
(b) Depends on the length.
c) 199 turns.

d) $B = \frac{25I}{L}$ (for B in mT and L in cm). $B = \mu_0 NI/L$.

\[\int B \cdot dl = \sum (B \cdot dl) = B \sum dl = BL\]

Middle: $\int B \cdot dl = \int B dl = B \int dl = BL$

\[\sum (B \cdot dl) = \sum (\mu_0 NI) = \sum \mu_0 I_{enc} = \mu_0 I_{enc} = \frac{2.5 \times 10^{-4}}{125 \times 10^{-3}} = 165 A\]

b. $145A / 0.025 m = 5700 A/m$

Total length $= 0.025 m$ so total current $= 990 A$

c. Each loop has SA so $198 \text{ turns} = 200 \text{ turns}$

d. $B L = \mu_0 I_{enc}$ $I_{enc} = L n I$ $n = \frac{\text{# of turns}}{\text{length}}$

$B L = \mu_0 I_{enc}$ $I_{enc} = L n I$ $n = \frac{\text{# of turns}}{\text{length}}$

$B L = \mu_0 I_{enc}$ $I_{enc} = L n I$ $n = \frac{\text{# of turns}}{\text{length}}$

\[B = (\mu_0) \frac{200 I}{\text{length}} = 2.5 \times 10^{-4} \frac{I}{\text{length}}\]

$B (\text{mT}) = 2.5 \frac{I}{\text{length} \text{cm}} < B \text{ in } \mu T, \text{length in cm}$

\[P.28.10 \text{ (Level 3, calculus)}\]

\textbf{Topic(s)}: Biot-Savart law

\textbf{Answer:}

a) 30A.
b) $B = 18.5/R$ where B in mT and R in mm.

\[d\vec{B} = \frac{\mu_0 I}{2\pi R^2} \times \frac{\vec{z}}{R} \Rightarrow \vec{r} = R\hat{r} \]

\[d\vec{B} = \frac{\mu_0 I}{4\pi R^3} \vec{z} \times (d\vec{l}) R \quad \text{in direction out of screen} \]

\[|\vec{B}| = \int \frac{\mu_0 I}{4\pi R^2} dl = \frac{\mu_0 I}{2\pi R} \int dl = \frac{\mu_0 I}{2\pi R} L \]

\[|\vec{B}| = \frac{\mu_0 I}{2\pi R} L \]

\[|\vec{B}(R=0.002)| = 9.32 \text{ mT}, \quad I = \frac{(9.32 \times 10^{-3}) \times 2(0.002)}{4\pi \times 10^{-5}} \]

\[I = 29.7 \quad A = \frac{20A}{A} \]

b. \[|\vec{B}| = \left(\frac{\mu_0 I}{2\pi R}\right) \frac{1}{R} = \left(\frac{1.86 \times 10^{-5}}{2}\right) \frac{1}{R} \]

\[|B| = 18.5/R \quad \text{for B in mT and R in mm} \]

Check: $R=1.00\text{ mm}$ \[|B| = 18.46 \text{ mT} \checkmark \]
Chapter II.29: Faraday's Law

Illustrations

Illustration 29.1: Varying Field and Varying Area

Topic(s): flux, emf, Faraday’s law
Purpose: To demonstrate the connection between flux and induced emf.
Suggested Use: Have students examine the graphs of flux and emf, describing the differences. Students should be able to predict one given the other one. Students should also be able to explain (have them explain to a peer) how what is happening to the magnetic field or the loop relates to the graphs.

Illustration 29.2: Loop in a Changing Vector Field

Topic(s): flux, emf, Faraday’s law
Purpose: To illustrate the different ways to have a changing flux.
Suggested Use: Students should be able to explain that the rate of change of the flux is the same for both animations (given the same slider values) and that the difference between whether the field is increasing and decreasing or rotating simply changes the way you calculate the flux. Exploration 29.4 asks students to do more quantitative work with this same animation.

Illustration 29.3: Electric Generator

Topic(s): flux, emf, Faraday’s law
Purpose: To demonstrate an application of Faraday’s law: generating electricity.
Suggested Use: Have students describe different ways to change the magnetic flux through a wire loop. Students should be able to explain what happens in this illustration and connect it to what happens in a demonstration Genecon (hand generator) or bicycle wheel generator. Extension: Have students calculate the magnetic field (can use flux view or normal view. Answer: 0.2T)

Explorations

Exploration 29.1

Topic(s): Lenz’s law

Exploration 29.2

Topic(s): Faraday’s law, Lorentz force, power

Exploration 29.3

Topic(s): flux, emf, Faraday’s law

Exploration 29.4

Topic(s): Faradays’ law, emf
Exploration 29.5

Topic(s): inductance, Faraday’s law, emf

Problems

P.29.1 (Level 2)

Topic(s): Lenz’s law

Answer:

a) $\mathbf{A}=\text{CCW (counter clock-wise)}$; $\mathbf{B}=0$; $\mathbf{C}=\text{CW (clock-wise)}$

b) $\mathbf{A}=\text{CW}$; $\mathbf{B}=0$; $\mathbf{C}=\text{CCW}$

c) $\mathbf{A}=\text{CW}$; $\mathbf{B}=0$; $\mathbf{C}=\text{CCW}$

P.29.2 (Level 2)

Topic(s): Faraday’s law

Answer:

a) $I=0$ for $t<2.5s$ and $t>3.5s$, $I>0$ (constant value) for $2.5<t<3.5$.

b) **I would be smaller** because smaller change in flux for the same time.

P.29.3 (Level 2)

Topic(s): Faraday’s law, Lorentz force

Answer:

a) 0.15A. $I=\frac{BLv}{R}$, $v=3\text{m/s}$, $L=5\text{m}$.

b) $F=ILxB$ in left wire is opposite direction of pulling force

c) $F=ILB=1.5\text{N}$

d) accelerate to right
P.29.4 (Level 3)

Topic(s): Lenz’s law, Faraday’s law

Answer:

a) \(I = 0 \) for \(t = 1.5 \) and \(t = 3.5 \); \(I = \text{CW} \) for \(t = 2.5 \); \(I = \text{CCW} \) for \(t = 0.5 \) and \(t = 4.5 \).

b) \(I(t = 2.5) = I(t = 0.5) > I(t = 1.5) = I(t = 3.5) = 0 \). Note that the solution below includes the time \(t = 4.5 \) s in the answer for part (b). We deemed this to be too difficult for students but left in the solution for instructors’ purposes.

\[
\begin{align*}
\text{From } t = 4.5, 4.5 & \\
\text{increased} & \\
\text{1 unit} & \\
\text{t = 1.5, no change in flux} & \\
\text{(same distance from beginning)} & \\
\text{t = 2.5, I = 0} & \\
\text{t = 2.5, decreasing flux into screen so} & \\
\text{CCW} & \\
\text{t = 4.5, radius increasing so increasing flux into} & \\
\text{screen so} & \\
\text{CCW} & \\
\text{t = 0.5 \ 10 \text{ m/s in x-direction}} & \\
\text{t = 2.5 s} & \\
\text{v _x = 10 \text{ m/s} so moves away} & \\
\text{from long wire at same rate as} & \\
\text{moved forward} \text{ it (and same distance move} & \\
\text{a)} & \\
\text{t = 4.5 s} & \\
\text{R changes 1 unit in 0.5 s} & \\
\text{b) but B is lower} & \\
\text{t = 0.5/0.5:} & \\
\frac{\partial \phi}{\partial t} & = \frac{d \phi}{dt} = \frac{d}{dt}(\frac{1}{2} \pi \frac{1}{20} (4 - 4 t^2) - \frac{1}{2} \pi \frac{1}{20} (1 - t^2)) = \frac{1}{2} \pi \frac{1}{20} \left(\frac{1}{2} - 2t^2\right) \sqrt{18} & \\
\phi_b & = A B \sqrt{r^2 - 18} \sqrt{70 \text{ m/s}^2} & \\
\text{t = 4.5:} & \\
\frac{\partial \phi}{\partial t} & = B \frac{\partial A}{\partial t} = B \frac{\partial}{\partial t} \sqrt{2} \pi \left(\frac{1}{2}\right) \frac{1}{2} \pi \frac{1}{20} \sqrt{18} \times \frac{1}{2} \times 2.5 & \\
\text{So} & \\
\frac{\partial \phi}{\partial t} & \propto t = 4.5 \text{ s is greater,} \text{ Note: this assumes} & \\
\frac{\phi_b}{\phi_b} & \text{ when actually} \frac{\phi_b}{\phi_b} \text{ and B is not constant} & \\
\text{So} & \\
\left|\frac{\partial \phi}{\partial t}\right|_{t = 4.5} & > \left|\frac{\partial \phi}{\partial t}\right|_{t = 0.5} & > \left|\frac{\partial \phi}{\partial t}\right|_{t = 4.5} & > \left|\frac{\partial \phi}{\partial t}\right|_{t = 1.5} \text{ or any other time before} \}
\end{align*}
\]
P.29.5 (Level 2)
Topic(s): Faraday’s law, emf
Answer:

a)

b) 3.7V. dB/dt=1.2/.005; A=π(.07)^2.
c) current vs time~emf vs time

P.29.6 (Level 2)
Topic(s): Faraday’s law, emf
Answer:
up

P.29.7 (Level 3)
Topic(s): Faraday’s law, emf
Answer:
Animation 1. As N pole enters, induced current CW (negative emf) in center of magnet, field is constant so emf=0, as magnet exits, induced current CCW (flux dropping off).

P.29.8 (Level 2)
Topic(s): Faraday’s law, emf
Answer:
Out of screen. As you reduce the area, CCW current induced (to keep a higher flux out of screen so B must be out of screen).

P.29.9 (Level 3)
Topic(s): Faraday’s law, Lorentz force, emf
Answer:
21 mT.
P.29.10 (Level 3)

Topic(s): Faraday’s law, emf

Answer:

a) \(0.07\text{T}\). \(T=3.14\), \(\omega=2\) and \(\text{emf}_{\text{max}}=\omega B_{\text{max}} A\) and \(A=0.012\text{m}^2\).

b) CCW
Instructors Guide for Physlet® Physics
Anne J. Cox and Melissa H. Dancy

P.29.11 (Level 3)

Topic(s): Faraday’s law, inductance

Answer:

a) 0.9 mH. emf=L(dI/dt)=\Delta L/\Delta t=L10/4 to solve for L

b) 250 loops/m. B=\mu_0nI to solve for n.

c) 1-m. Use L=\mu_0N^2A/length=\mu_0n^2A\text{length} to find length.
Chapter II.30: DC Circuits

Illustrations

Illustration 30.1: Complete Circuits
Topics: voltage, current
Purpose: To introduce the idea of a complete circuit and how to determine the voltages and currents open circuits.
Suggested Use: Have students predict the voltages for the possible broken bulbs. Students do not find it surprising that if you have no current and if the wire is not broken, then the voltage across the wire is zero, but they do find it surprising that the voltage difference between one broken wire and another does not have to be zero. Here, it may be useful for students to think of two wires not connected to anything and simply attached to two ends of a battery. Students having difficulty with Problem 30.1 should make sure they understand this Illustration completely.

Illustration 30.2: Circuits, Voltage and Current
Topics: voltage, current, switches
Purpose: To help students understand voltages in complete and open circuits.
Suggested Use: This is an extension of Illustration 30.1. Again, students should try to predict the voltage readings.

Illustration 30.3: Current and Voltage Dividers
Topics: voltage, current, resistance
Purpose: To introduce voltage dividers and current dividers.
Suggested Use: Provides a practical application of using resistor networks to make voltage and current dividers. Students should develop a feel for how the current and voltages change in these “dividers” as the resistance changes. Students find it surprising that increasing R can either increase or decrease current from the source depending on the configuration.

Illustration 30.4: Batteries and Switches
Topics: switches, batteries, voltages
Purpose: To distinguish between batteries added in parallel and in series.
Suggested Use: Students are very surprised that when S3 closes nothing happens (often they will need a real demonstration of this because many are convinced that the animation is wrong because they believe more batteries necessarily means brighter lights). Students should use this to explain what happens when batteries are added in series in comparison with adding batteries in parallel.

Illustration 30.5: Ohm's "Law"
Topics: Ohm’s law
Purpose: To show that there are electronic (non-linear) devices that do not obey Ohm’s law so it is not a “law” in the same sense as Newton’s Laws.

Suggested Use: Observe differences between the curves. Note that students can find resistance of bulb: 150 Ω as well as Bulb—low current/voltage part of curve and higher current/voltage. Diode allows current in one direction (I=0 when reverse biased) and has a voltage drop (in this case) of about 0.5 V across it.

Illustration 30.6: RC Circuit

Topics: switched RC

Purpose: To introduce switched RC circuits and the voltage across different elements when the capacitor is charging and discharging.

Suggested Use: Students should explain why current flows (why the bulb lights) when the capacitor is charging and discharging (and why the bulb goes out once the capacitor is fully charged). Students are often surprised that the bulb lights in both cases—the graphs can help, but the resistor voltage going from negative1V to 0 while discharging is often surprising until they realize it is simply an expression of the current going in the other direction.

Illustration 30.7: The Loop Rule

Topics: Kirchhoff’s loop rule

Purpose: To demonstrate the voltage drops across circuit elements and the use of Kirchhoff’s laws.

Suggested Use: Students should first predict the voltage as a function of time (as the charge goes around the loop) and then compare their predictions to the plot.

Explorations

Exploration 30.1

Topics: voltage, current, resistance

Exploration 30.2

Topics: switches, resistance, voltage, current

Exploration 30.3

Topics: voltage, resistance, power

Exploration 30.4

Topics: current, meters, internal resistance

Exploration 30.5

Topics: voltage, meters, internal resistance

Exploration 30.6

Topics: switched RC
Problems

P.30.1 (Level 2)

Topic(s): switches, voltage, current

Answer:

a. Circuit 1: Three Bulbs

 when Bulb 1 is unscrewed, it doesn't change Bulbs 2 & 3 so it must be in parallel with them.
 when Bulb 2 or 3 is unscrewed, the other one goes out (no current) so they are in series with each other.

b. Circuit 2: Three Bulbs

 Bulb 2 is brighter than 1 and 3 and when it is removed, all bulbs go out.
 When either 1 or 3 is removed, the remaining bulb and 2 are the same brightness.

c. Circuit 3: Four Bulbs

 Strategy:
 Look for the Bulb with the most current and remove it from the circuit. The Bulbs that go out at the same time are in series with it while the Bulbs that stay on are in a parallel branch.

d. Circuit 4: Four Bulbs

 Systematically test the rest of the Bulbs to determine parallel and series branches.

e. Circuit 5: Five Bulbs

f. Circuit 6: Six Bulbs

g. Circuit 7: Six Bulbs
P.30.2 (Level 1)

Topic(s): current, voltage, resistance

Answer:

a) as R increases, C stays the same and A & B are dimmer.

b) in parallel

c) as R increases, A & B have less current (more total resistance in the branch through A & B) so less current from the battery

d) No

e) as R increases, the voltages across A & B are less because there is less current and more voltage drops across R (total resistance of the branch increases).

f) constant V source, but current changes to meet the resistive load.

P.30.3 (Level 2)

Topic(s): voltage, current, power, resistance

Answer:

a) \(600 \Omega, 15V\). \(P_{\text{max}}=321\text{mW}; P_{\text{min}}=141\text{mW}\). \(9V/15mA=600\Omega=R\).

\(V_{\text{battery}}=(400+600)\Omega \times 0.015A=15V\). \(P=IV\).

\(b) V_{\text{battery}}=7V; R=400\Omega; P_{\text{max}}=653\text{mW} P_{\text{min}}=212\text{mW}\). \(I_{\text{unknown}}=I_{\text{battery}}-I_{\text{variable}}=23.33\) for \(R_{\text{variable}}=400\ \Omega\).

c) \(V_{\text{battery}}=12V R=700\Omega\). \(P_{\text{max}}=180\text{mW}; P_{\text{min}}=85\text{mW}\). \(V_{\text{battery}}=12V\) when \(R_{\text{variable}}=400\ \Omega\), \(V=6V\) across each resistor when \(R_{\text{variable}}=700\ \Omega\).

Note: 3 very different circuit configurations in the parts of this problem.

P.30.4 (Level 2)

Topic(s): current, voltage, resistance

Answer:

a) \(R_b<R_a<R_c\). Switches open \(I=0.25\) through A, S2 closed, \(I=0.75\) so 0.50 through B, \(R_b<R_a\). S1 closed, \(I=0.37\) so 0.12 through C, \(R_c>R_a\) so \(R_b<R_a<R_c\).

b) \(R_c<R_b<R_a\). S1 open and S2 closed, I through \(R_b\) is 0.25. S2 open, \(I=0.08\) so \(R_a>R_b\) (if \(R_a=R_b\), \(I=0.125\)). S2 open and S1 closed, \(I=0.75\) so current through \(R_c\) is 0.5 so \(R_c<R_b\).

Note: 2 different circuit configurations in parts of this problem.

P.30.5 (Level 2)

Topic(s): voltage, Ohm’s law, power, current

Answer:

- **Graphs A, B and D.** V is constant and \(P=V^2/R, I=V/R\) so both P vs. R and I vs. R have same shape. Graphs A, B and D are correct—others show a linear relationship between I and R and P and R.

P.30.6 (Level 2)

Topic(s): current, voltage

Answer:
a) **10V in parallel with 20V** (two 10V in series) so short circuit batteries.
b) **short circuit battery** (through branch with switch).
c) **too much current through 100Ω** resistor (P=1W so power rating on resistor must be less than 1W).

P.30.7 (Level 2)
Topic(s): voltage, current, resistance
Answer:
A. $R_x = 162 \, \Omega$
B. $82 \, \Omega$
C. $330 \, \Omega$. when $I=0$, voltage across 390 is the same as is voltage across variable and voltage across 561 is the same as across R_x: Voltage divider:
$$\frac{561}{390+561} = \frac{R_x}{R_x + R_{\text{variable}}}$$
so $R_x = R_{\text{variable}} \frac{561}{390}$. Circuit A: $R_{\text{variable}} = 113 \, \Omega$ so $R_x = 162 \, \Omega$. Circuit B, $R_{\text{variable}} = 57 \, \Omega$ so $R_x = 82 \, \Omega$. Circuit C: $R_{\text{variable}} = 230 \, \Omega$ so $R_x = 330 \, \Omega$.

P.30.8 (Level 3)
Topic(s): voltage, current, internal resistance, meters
Answer:
a) $R_{\text{ammeter}} = \frac{0.82 \, \text{V}}{0.409 \, \text{A}} = 2 \, \Omega$. Use Circuit A to find R_{ammeter}. Keep variable resistor small (similar to ammeter)—with $R_{\text{variable}} = 20$, ammeter reads 0.409A so voltage drop across R_{variable} is 8.18 so voltage drop across ammeter is 0.82V. Thus, $R_{\text{ammeter}} = \frac{0.82 \, \text{V}}{0.409 \, \text{A}} = 2 \, \Omega$.
b) $R_{\text{voltmeter}} = \frac{9 \, \text{V}}{9 \times 10^{-5} \, \text{A}} = 100 \, \text{k} \, \Omega$. Use circuit B to find $R_{\text{voltmeter}}$—need big R_{variable} (in the range of $R_{\text{voltmeter}}$). $R_{\text{variable}} = 200 \, \text{k} \, \Omega$, $I_{\text{variable}} = \frac{9}{200 \, \text{kW}} = 4.5 \times 10^{-5} \, \text{A}$ which leaves $1.35 \times 10^{-4} \, \text{A} - 4.5 \times 10^{-5} \, \text{A}$ through voltmeter so $R_{\text{voltmeter}} = \frac{9 \, \text{V}}{9 \times 10^{-5} \, \text{A}} = 100 \, \text{k} \, \Omega$.
c) **Use Circuit A for unknown big resistors** (if use Circuit B, a value of R close to $R_{\text{voltmeter}}$ will give current reading for an effective resistance and result in an underestimate of resistance)
d) **Use Circuit B for unknown small resistors** (with Circuit A, the voltage drop through the ammeter could be of the same size as the voltage drop through the resistor).

P.30.9 (Level 3)
Topic(s): internal resistance, voltage, current
Answer:
$R = 5 \, \Omega$. With $V=10 \, \text{V}$ for both (can adjust values): V drop across 68Ω resistor is 3.43V and across 47Ω resistor is 6.31 (current through 47Ω resistor=sum of currents: 50.51mA+83.8mA) so voltage drop through left battery is 0.26V so $R = \frac{0.26 \, \text{V}}{0.0515 \, \text{A}} = 5 \, \Omega$. Same type of analysis for right battery.
P.30.10 (Level 2)

Topic(s): power, resistance, current, voltage

Answer:
- Circuit A: 118Ω, P=0.84=I²R so \(I_{\text{variable}} = 0.917\text{A} \) and \(V_{\text{variable}} = 9.165\text{V} \) so \(V_{\text{unknown}} = 20-9.165 = 10.83\text{V} \). When \(R_{\text{variable}} = R_{\text{unknown}} \), peak on power curve so simply read \(R \) for peak power:
 - Circuit B: 180Ω
 - Circuit C: 270Ω.

P.30.11 (Level 1, calculus required)

Topic(s): switched RC

Answer:
- \(R_b > R_a > R_c \). Circuit A: time for 1V to 0V is about .84ms. Circuit B: time is about 1.9ms and Circuit C: time is .52ms and longer time means bigger RC time constant.
P.30.12 (Level 3, calculus required)

Topic(s): switched RC

Answer:

\[C = 4.2 \, \mu \text{F}. \; R=100, \text{ time for } 1\text{V} \text{ to } 0.5\text{V} \text{ is about } .29\text{ms.} \; \frac{1}{2} = 1 \times e^{-t/(RC)} \text{ so } \ln(\frac{1}{2}) = -\frac{t}{RC}. \]

P.30.13 (Level 2, calculus required)

Topic(s): switched RC

Answer:

Graph C. With two capacitors in parallel, total capacitance is doubled so time to discharge to same point doubled (but voltage still goes from 1 to 0 when discharging).
Chapter II.31: AC Circuits

Illustrations

Illustration 31.1: Circuit Builder
Topics: RC, RL, and RLC; voltage, current
Purpose: To introduce a circuit simulator.
Suggested Use: This is a very flexible method of simulating circuits: both ac and dc. In class, you can build any circuit and plot the voltage and current of any circuit element.

Illustration 31.2: AC Voltage and Current
Topics: voltage, current
Purpose: To introduce the idea of alternating current.
Suggested Use: Change the frequency and point out the change in the rate the lights blink, but also that the lights go and off. If you compare the plot of voltage versus time with a carefully wired (be careful with outlet current) oscilloscope measurement of voltage versus time for a light bulb connected to a wall outlet, you can show that even though we can not see it, the light bulb must be going on and off. It is also designed to provide a quick introduction to rms voltage and current in an independent exercise for the students (they can verify the power of bulb).

Illustration 31.3: Transformers
Topics: transformers
Purpose: To introduce the idea of transformers and the reason we use AC (not DC).
Suggested Use: By changing the windings in the transformer, step the voltage up and down and find that the ratio of the voltages is equal to the ratio of windings. Students should verify the power calculations to show that delivering power at low current and high voltages over transmission lines is best since transformers can easily step the voltage down at a house.

Illustration 31.4: Phase Shifts
Topics: reactance, capacitor and inductor loads
Purpose: To introduce the phase shift and reactance associated with capacitive and inductive loads.
Suggested Use: Vary the frequency to demonstrate what happens to the current as a function of frequency. Can use this to develop the idea of reactance as well as noting the phase shift between current and voltage for inductors and capacitors (leading and lagging of current).

Illustration 31.5: Power and Reactance
Topics: power, capacitor and inductor loads
Purpose: To develop the connection between power and the phase shift between the current and voltage.
Suggested Use: Have students explain why the phase shift matters in calculating the power dissipated.

Illustration 31.6: Voltage and Current Phasors
Topics: phasors, impedance, RC
Purpose: To connect a phasor representation to voltage and currents in circuit elements.
Suggested Use: Change the frequency and note the change in the phasor as well as the voltage and current plotted (more on phasors in Illustration 31.7 and Explorations 31.5 and 31.6).

Illustration 31.7: RC Circuits Voltage Phasors
Topics: phasors, RC
Purpose: To show the frequency response of impedance as R, L and C are varied.
Suggested Use: Students should begin to be able to explain how the phasor representation connects to the voltages: comparing the plot of the voltage and the projection of the vector (more on phasors in Illustration 31.6 and Explorations 31.5 and 31.6).

Illustration 31.8: Impedance and Resonance, RLC Circuit
Topics: impedance, resonance, RLC
Purpose: To show the frequency response of impedance as R, L and C are varied.
Suggested Use: Change L and C to demonstrate how the peak (resonance) changes in frequency, but changing R simply changes the sharpness of the peak. Note that a decrease in impedance means more current is going through the circuit so that when \(\omega L = \frac{1}{\omega C} \), Z = R (its minimum value) there is maximum current.

Explorations

Exploration 31.1
Topics: voltage

Exploration 31.2
Topics: reactance

Exploration 31.3
Topics: reactance, filters

Exploration 31.4
Topics: impedance, power

Exploration 31.5
Topics: impedance, phasors, RL
Exploration 31.6
Topics: impedance, phasors, RLC

Exploration 31.7
Topics: impedance, resonance

Exploration 31.8
Topics: impedance, resonance, switched RLC

Problems

P.31.1 (Level 2)
Topic(s): switches, power, voltage
Answer:

A: $P = 45 \text{ W}$. close S2,S4,S5
B: $P = 60 \text{ W}$. close S1,S3,S5
C: $P = 60 \text{ W}$. close S1,S2,S5
D: $P = 100 \text{ W}$. close S1,S2,S4:

P.31.2 (Level 2)
Topic(s): transformers, power
Answer:

a) 104 windings; $V_p=171$; $V_s=44.5$ so $N_s=(400)V_p/V_s=104$

b) $I_{rms}=.041 \text{ A}$; $V_{rms}=31.5 \text{ V}$ so $I_{rms}=.16 \text{ A}$, $P=5 \text{ W}$ for both secondary and primary so primary $I_{rms}=.041 \text{ A}$.

c) 5 W

P.31.3 (Level 2)
Topic(s): power, resistors
Answer:

a) $R_{unknown}= 1.5 \text{ k} \Omega$; $P_{avg}= 8.5 \text{ mW}$
b) $R_{unknown}= 470 \text{ } \Omega$; $P_{avg}= 16 \text{ mW}$
c) $R_{unknown}= 590 \text{ } \Omega$; $P_{avg}= 35 \text{ mW}$
P.31.4 (Level 1)
Topic(s): power, reactance
Answer:
 a) B, resistor
 b) A, inductor
 c) C, capacitor

P.31.5 (Level 2)
Topic(s): reactance
Answer:
 a) 6.5e-5 F. At f=2550, Peak V=17.45; Peak I=18.25 so X=.956=1/ωC.
 b) 5.6e-4 H. At f=800, Peak V=28.15; peak I=10.0 so X=2.81=ωL.

P.31.6 (Level 2)
Topic(s): voltage
Answer:
Graph B. Since there are no values given, simply need to check Kirchoff’s laws: the voltage across the load elements must equal the source voltage at all points and it is easiest to look at points where the source voltage crosses (is equal to) one of the load values to see if the other voltage is 0 at that same time.

P.31.7 (Level 2)
Topic(s): voltage
Answer:

Graph C. Since there are no values given, simply need to check Kirchoff’s laws: the voltage across the load elements must equal the source voltage at all points and it is easiest to look at points where the source voltage crosses (is equal to) one of the load values to see if the other voltage is 0 at that same time.

P.31.8 (Level 2)
Topic(s): impedance, LC
Answer:

L=0.15 H.

\[L = \frac{1}{\omega^2} \]

b. Average power dissipated is zero. Current and voltage are ninety degrees out of phase.

P.31.9 (Level 3)
Topic(s): power, impedance
Answer:

1) 9 mW. \(T=1.7\times10^{-3}; f=588\text{Hz}; \ \text{Vrms}=3.5; \ \text{Irms}=3.25 \) and phase shift=42° (measured from graph) or \(R/Z=.79 \)

2) 8 mW. \(T=1.25\times10^{-3}; f=140 \text{Hz}; \ \text{Vpeak}=5, \ \text{Ipeak}=3.6\text{mA} \) and phase shift=30° (measured from graph) or \(R/Z=.85 \)

3) 4.5 mW. \(T=2\times10^{-3}; f=500 \text{Hz}; \ \text{Vpeak}=5, \ \text{Ipeak}=2.9\text{mA} \) and phase shift=50° (measured from graph) or \(R/Z=.72 \)
1. Circuit I: RC Circuit

\[V_p = 5 \text{ V} \]
\[I_p = 4.6 \text{ mA} \]
\[f = 625 \text{ Hz} \]
\[\omega = 3.9 \pi \text{ rad/sec} \]

\[P = V_{rms} I_{rms} \cos \phi \]

\[\omega = \frac{R}{\sqrt{R^2 + (X_L - X_C)^2}} \]
\[\phi = \frac{1}{\omega L} \]

OR measure the phase shift between voltage and current from the graph:
\[\Delta t' \text{ between current and voltage: } 0.2 \text{ msec} \]
\[\phi = 0.7 \text{ rad} = 45^\circ \]
\[\cos 45^\circ = 0.7 \]

\[P = 9 \text{ mW} \]

2. Circuit II: RL Circuit

\[V_p = 5 \text{ V} \]
\[I_p = 3.6 \text{ mA} \]
\[f = 555 \text{ Hz} \]
\[\omega = 5236 \text{ rad/sec} \]

\[X_L = \frac{1}{\omega L} \]
\[Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2} \]

\[P = 7.7 \text{ mW} \]

3. Circuit III: RLC Circuit

\[V_p = 5 \text{ V} \]
\[I_p = 2.8 \text{ mA} \]
\[f = 500 \text{ Hz} \]
\[\omega = 3141 \text{ rad/sec} \]

\[X_L = \frac{1}{\omega C} \]
\[X_C = \frac{1}{\omega L} \]
\[Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2} \]

\[P = 5 \text{ mW} \]

P.31.10 (Level 2)

Topic(s): reactance, filters

Answer:
a) **Green**
b) **Blue**
c) **A-tweeter and B-woofer.** Blue is high freq part (filters out low freq) and is capacitor since capacitors act like open circuit for DC and low frequencies (and short circuits for high frequencies)

P.31.11 (Level 2)

Topic(s): reactance, power

Answer:
a) \[C = 3 \times 10^{-7} \text{ F} \]
b) \[P = 11 \text{ mW} \]

Change \(f \) until voltage across \(R \) = voltage across \(C \) then \(X_C = R \). Or measure \(f \), \(V \) and \(I \) and find \(X_C \). \(f = 947 \text{ Hz} \) \(I = 6.3 \text{ mA} \) and find power.

P.31.12 (Level 2)

Topic(s): reactance, power

Answer:
a) \[L = 0.08 \text{ H} \]
b) \[P = 13 \text{ mW} \]

Change \(f \) until voltage across \(R \) = voltage across \(L \) then \(X_L = R \). Or measure \(f \), \(V \) and \(I \) and find \(X_L \). \(f = 935 \text{ Hz} \) \(I = 7.5 \text{ mA} \) and find power.

\[
\begin{align*}
\text{a.} & \quad f = \frac{1}{2 \pi} \sqrt{\frac{1}{LC}} \\
\quad & \quad V_s = 5 \text{ V (peak)} \\
\quad & \quad V_R = 3.4 \text{ V} \\
\quad & \quad V_L = 3.4 \text{ V} \\
\quad & \quad I_{\text{peak}} = 3.2 \text{ mA} \\
\quad & \quad Z = \sqrt{R^2 + \omega^2 L^2} \\
\quad & \quad R = \frac{V_{\text{rms}}}{I_{\text{rms}}} \\
\quad & \quad \omega = \frac{V_{\text{peak}}}{I_{\text{peak}}} = \frac{5 \text{ V}}{3.2 \text{ mA}} = \frac{625}{3.2 \text{ mA}} = 194 \Omega \\
\quad & \quad X_C = \frac{V_{\text{rms}}}{I_{\text{rms}}} = \frac{5 \text{ V}}{3.2 \text{ mA}} = 1562 \Omega \\
\quad & \quad X_L = \frac{V_{\text{rms}}}{I_{\text{rms}}} = \frac{5 \text{ V}}{3.2 \text{ mA}} = 1562 \Omega \\
\quad & \quad f = 947 \text{ Hz} \\
\quad & \quad I = 6.3 \text{ mA} \\
\quad & \quad P = \frac{1}{2} V_{\text{rms}}^2 I R_{\text{rms}} \\
\quad & \quad P = \frac{1}{2} (5 \text{ V})^2 (3.2 \text{ mA}) = 16 \text{ mW} \\
\quad & \quad P = \frac{1}{2} (5 \text{ V})^2 (3.2 \text{ mA}) = 16 \text{ mW} \\
\quad & \quad P = \frac{1}{2} (5 \text{ V})^2 (3.2 \text{ mA}) = 16 \text{ mW} \\
\end{align*}
\]

Note that when \(R = \omega L \), \(VR = VL \).
P.31.13 (Level 1)
Topic(s): switched RLC
Answer:
Rc>Ra>Rb. Time to damp longest, largest resistance.

P.31.14 (Level 1)
Topic(s): resonance
Answer:
a) 210 Hz. When have maximum current (max voltage across resistor), at resonance.
b) Graph A.
Chapter II.32: EM Waves

Illustrations

Illustration 32.1: Creation of Electromagnetic Waves
Topic(s): em waves
Purpose: To demonstrate the creation of EM waves by accelerating charges.
Suggested Use: As an in-class demonstration, this can be used to quickly make the connection between a charge (and its electric field) and waves.

Illustration 32.2: Wave Crests
Topic(s): em waves
Purpose: To make the connection between EM waves and sound (pressure) waves.
Suggested Use: Discuss differences and similarities between em waves, sound waves, and transverse waves on a string.

Illustration 32.3: Electromagnetic Plane Waves
Topic(s): em waves, wavelength, frequency
Purpose: To illustrate the vector nature of EM waves.
Suggested Use: Standard physics texts present overviews of the electromagnetic spectrum and its relationship to wavelength and frequency. This illustration reinforces these concepts and points out the vector nature of E&M waves. Students must move the transparent square along the z axis to measure wavelength and must observe the time it takes for the field to repeat itself to measure period. The vector field representation of a plane wave is unfamiliar and ought to be discussed in class. This discussion should focus on the misconception that the electric field only exists along the z axis.
Answers: no; wave equation; \(\lambda = 20 \text{m} \) (radio); \(f = 15 \text{ MHz} \); \(v = 3 \times 10^8 \text{ m/s} \).

Illustration 32.4: Electromagnetic Waves, \(E \times B \)
Topic(s): em waves
Purpose: To demonstrate the connections between E & B fields and wave properties.
Suggested Use: Discuss with students the orientation between E and B, that \(E \times B \) determines the direction of propagation of the wave (can check for the 2 waves), and the connections to the equations that describe E & B.

Explorations

Exploration 32.1 - Representation of Plane Waves
Topic(s): em waves, frequency, wavelength
Answer: b) \(V < IV = 0 < I = II = III \), c) \(I = V < II = IV = 0 < III \), d) 2m, e) 6.7Hz, f) 13.4 m/s

Exploration 32.2 - Plane Waves and the Electric Field Equation
Topic(s): em waves
Answer: a) The field varies with both position along the z-axis and time. b) The direction of the field is the x-direction. c) $B(z,t) = E_{\text{max}}/c \cos(kz-wt) \hat{j}$

Problems

P.32.1 (Level 1)
Topic(s): em waves
Answer: red=electric; green=magnetic

P.32.2 (Level 1)
Topic(s): em waves, wavelength
Answer: UV
Wavelength of B is $\frac{1}{2}$ A so frequency is twice. Green: $\lambda=532\text{nm}$ so wavelength of is around 266nm (UV). Light has same intensity (same power).

P.32.3 (Level 1)
Topic(s): em waves, wavelength
Answer: A=red; B=violet; C=green

P.32.4 (Level 2)
Topic(s): em waves, wavelength, frequency
Answer: a) B-field along y-axis, b) $\lambda=.78$ microns; $f=3.8\times10^{14}$ Hz; $v=3\times10^8$ m/s

P.32.5 (Level 2)
Topic(s): em waves, wavelength, frequency
Answer: a) B-field perpendicular to xy-plane, containing the line $y=-x.$, b) $\lambda=1.11$ mm; $f=0.27\times10^{12}$ Hz; $v=3\times10^8$ m/s;

P.32.6 (Level 1)
Topic(s): em waves
Answer: a) Into and out of the screen (perpendicular and in phase), b) along horizontal axis through center of oscillation (where e-field wave amplitude is largest).
Chapter II.33: Mirrors

Illustrations

Illustration 33.1: Mirrors and the Small-Angle Approximation

Topic(s): mirrors
Purpose: To provide a flexible set-up for testing optical systems.
Suggested Use: Have students explore the difference between beam sources (parallel rays), point sources and objects (which show only the principal rays) as well as the difference between converging and diverging mirrors (positive and negative focal lengths). Students should move the sources around to get a sense of what happens light reflects off of mirrors.

Illustration 33.2: Flat Mirrors

Topic(s): mirrors
Purpose: To illustrate the formation of images in mirrors.
Suggested Use: Students can work individually on this to adjust the object size and notice the “reflection in the mirror” as well as changing the angle. Introduces the idea of a virtual image. Students should be able to explain why we see the images we do in mirrors and where the light comes from (and why it is useful to extend the ray behind the mirror to determine image properties).

Explorations

Exploration 33.1 - Image in a Flat Mirror

Topic(s): mirrors

Exploration 33.2 - Looking at Curved Mirrors

Topic(s): mirrors

Exploration 33.3 - Ray Diagrams

Topic(s): mirrors, focal point

Exploration 33.4: Focal Point and Image Point

Topic(s): mirrors, focal point

Exploration 33.5: Convex Mirrors, Focal Point, and Radius of Curvature

Topic(s): mirrors, focal point
Problems

P.33.1 (Level 1)
Topic(s): mirrors, focal point
Answer: 1.3m

P.33.2 (Level 1)
Topic(s): mirrors, focal point
Answer: 1 m

P.33.3 (Level 1)
Topic(s): mirrors, focal point
Answer: C

P.33.4 (Level 1)
Topic(s): mirrors, focal point
Answer: 0.75-m

P.33.5 (Level 2)
Topic(s): mirrors, focal point
Answer: -1m

P.33.6 (Level 2)
Topic(s): mirrors, focal point
Answer: green

P.33.7 (Level 2)
Topic(s): mirrors
Answer: a) Can’t be Concave, b) Can’t be Plane, c) Convex.

P.33.8 (Level 2)
Topic(s): mirrors
Answer: a) A-Convex Mirror, B-Concave Mirror, C-Plane Mirror, D-Concave Mirror, b) D>B (both concave mirrors)>A(convex); C=plane mirror (f→±infinity)
Chapter II.34: Refraction

Illustrations

Illustration 34.1: Huygens' Principle and Refraction
Topic(s): refraction, Huygens’ principle
Purpose: To illustrate Huygens’ principle.
Suggested Use: Students need to pay particular attention to what happens at the interface. The bending of the light is subtle the connection to the wavefronts can be missed if students aren’t paying attention. Have students describe to each other (or write down) what happens at the interface, explaining the wavefront.

Illustration 34.2: Fiber Optics
Topic(s): total internal reflection
Purpose: To illustrate how fiber optics work.
Suggested Use: Students should bring the source into the blue region and then change the angle to see the total internal reflection. Demonstration: laser beam internally reflected in a water flow (punch a small hole in the side of a clear plastic tennis ball “can,” align the laser beam so it will point in the same direction as the water leaving the hole and fill “can” with water).

Illustration 34.3: Prisms and Dispersion
Topic(s): refraction, dispersion
Purpose: To illustrate how a prism works.
Suggested Use: Students should be able to explain the refraction of light through a prism: predicting the approximate exit angle of the beam. As the index of refraction changes for each wavelength of light, students should also be able to explain why the exit angle changes the way that it does.

Explorations

Exploration 34.1 - Lens and a Changing Index of Refraction
Topic(s): refraction, lenses

Exploration 34.2 - Snell's law and Total Internal Reflection
Topic(s): refraction, total internal reflection, Snell’s law

Exploration 34.3 - Towards Building a Lens
Topic(s): refraction, lenses

Exploration 34.4 - Fermat’s Principle and Snell's Law
Topic(s): refraction
Exploration 34.5 - Index of Refraction and Wavelength

Topic(s): refraction, dispersion

Problems

P.34.1 (Level 1)

Topic(s): refraction, total internal reflection

Answer: a) $n=2.1-2.3$, b) $\sim 28^\circ$

P.34.2 (Level 1)

Topic(s): refraction

Answer: water, $n=1.3$

P.34.3 (Level 2)

Topic(s): refraction

Answer: $x=1.2\text{m}$

P.34.4 (Level 1)

Topic(s): refraction

Answer: $1.7-1.8$

P.34.5 (Level 3)

Topic(s): refraction, internal reflection

Answer: a) area$=1.45\text{ cm}^2$, b) area$=1.45D^2$
P.34.6 (Level 2)
Topic(s): refraction
Answer: C>D>A>B

P.34.7 (Level 3)
Topic(s): refraction, internal reflection
Answer: 3.8. The critical angle from A to air (n=1) interface is 36° while B to A is 45.1° (so beam starting in B barely makes it through), but C to B, the critical angle is 50.7° so beam starting in C gets through B, but is refracted enough to be greater than the critical angle for the B/A interface. Similar argument to explain what happens if the beam begins in D.

With source in region A, measuring angles
\[n_A \sin 45 = n_B \sin 30 \]
and \[n_A = 1 + x \], \[n_B = 1 + 2x \] where \(x \) is change across boundary
putting it all together \((1+x)\sin 45 = (1+2x)\sin 30 \)
\[1 + x = 0.71(1 + 2x) \]
\[0.3 = 0.42x \]
\[x = 0.71 \]

So \(n_A = 1 + 0.71 \), \[n_B = 1 + 2(0.7) \ldots n_D = 1 + 4(0.7) = 3.8 \]

P.34.8 (Level 2)
Topic(s): refraction
Answer: a) \(v = \frac{f}{\lambda} \), \(v \) smaller, \(\lambda \) smaller, b) \(n = \frac{c}{v} = \frac{\lambda_{\text{air}}}{\lambda_{\text{medium}}} = 2 \), c) \(v = .5c \)

P.34.9 (Level 1)
Topic(s): refraction
Answer: a) smaller, b) same, c) bigger, d) same

P.34.10 (Level 1)
Topic(s): refraction, dispersion
Answer: Animation A
Chapter II.35: Lenses

Illustrations

Illustration 35.1: Lenses and the Thin-Lens Approximation

Topic(s): lenses

Purpose: To provide a flexible set-up for testing optical systems.

Suggested Use: Have students explore the difference between beam sources (parallel rays), point sources and objects (which show only the principal rays) as well as the difference between converging and diverging lenses (positive and negative focal lengths). Students should move the sources around to get a sense of what happens light enters the lens.

Illustration 35.2: Image from a Diverging Lens

Topic(s): lenses

Purpose: To demonstrate images from diverging lenses.

Suggested Use: Have students make a ray diagram to provide a basis for their prediction or explanation of their observations.

Explorations

Exploration 35.1 - Image Formation

Topic(s): lenses, ray diagrams

Exploration 35.2 - Ray Diagrams

Topic(s): lenses

Exploration 35.3 – Moving a Lens

Topic(s): lenses

Exploration 35.4 – What is Behind the Curtain

Topic(s): lenses

Exploration 35.5 – Lens Maker’s Equation

Topic(s): lenses, lensmaker’s equation

Problems

P.35.1 (Level 1)

Topic(s): lenses, focal point

Answer: a) Converging Lenses for D and A, Diverging Lenses for B and C
b) $B < C$ (both negative) $< D < A$ [Magnitude: $|C| < |D| < |A| < |B|$. Comparing magnitudes requires some measurement for the divergent lenses.]

P.35.2 (Level 1)
Topic(s): lenses, focal point
Answer: a) A: diverging lens; B: nothing; C&D: converging lenses, b) A(negative) $< D < C$

P.35.3 (Level 1)
Topic(s): lenses, focal point
Answer: Same focal length.

P.35.4 (Level 1)
Topic(s): lenses, focal point
Answer: 0.7-m

P.35.5 (Level 2)
Topic(s): lenses, focal point
Answer: a) 1m; b) 1.42m & 2m

P.35.6 (Level 2)
Topic(s): lenses
Answer: a) image at position 3.3m (1.3m from lens); b) inverted $f = 0.8m$

P.35.7 (Level 2)
Topic(s): lenses
Answer: a) image at position 5m (3m from lens); b) inverted $f = 1.2m$

P.35.8 (Level 2)
Topic(s): lenses, focal point
Answer: 0.7 m for both

Source at $x = 0.25m$
when left lens at $x = 0.95$ rays emerge parallel so $f_L = 0.95 - 0.25 = 0.7m$
the parallel rays then pass through right lens at $x = 2.1$ to converge at $x = 2.8m$ so $f_R = 2.8 - 2.1 = 0.7m$

P.35.9 (Level 2)
Topic(s): lenses, focal point
Answer: left is 0.7 m and right is 1.4 m
P.35.10 (Level 3)

Topic(s): lenses

Answer: A=1.2m; B=0.8m; C=2m.

When source at x=0.25, left lens at x=0.96, right lens at x=1.46
rays emerge parallel from left and converge at x=2.84
\[f_L = 0.96 - 0.25 = 0.71m \]
\[f_R = 2.84 - 1.46 = 1.38m \]

P.35.11 (Level 3)

Topic(s): lenses, lensmaker’s equation

Answer: f=0.86cm; R = 1.14 cm

\[\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \quad \text{and} \quad \frac{1}{f} = (n-1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

So \[\frac{1}{d_o} + \frac{1}{d_i} = (n-1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]
\[\frac{1}{2.05} + \frac{1}{4.2} = (2.5-1) \left(\frac{1}{R_1} + \frac{1}{10cm} \right) \]
\[R_1 = 1.14cm \]
\[\frac{1}{f} = \frac{1}{1.14} + \frac{1}{4.2} \]
\[f = 0.86cm \]
Chapter II.36: Applications

Illustrations

Illustration 36.1: The Human Eye
Topic(s): lenses
Purpose: To demonstrate how the eye accommodates and the purpose of glasses.
Suggested Use: Have students explore how the eye focuses light from far sources and near sources for the healthy eye in contrast with the near-sighted and far-sighted eye. Students can add glasses to the near-sighted and far-sighted eyes to correct vision and this provides a concrete application of the geometric optics they have been studying.

Illustration 36.2: Camera
Topic(s): lenses
Purpose: To demonstrate camera focusing and different lenses.
Suggested Use: Students can “focus” the camera so that there is an image on the film using the different lenses. They can compare the different lenses (see also Exploration 36.1).

Illustration 36.3: Laser Cavity
Topic(s): mirrors
Purpose: To demonstrate an application of spherical mirrors to make a laser cavity.
Suggested Use: Students can explore when the cavity is stable and unstable as they change the mirror separation, focal length of the mirrors, and position of the source. Provides another example of applications of optics. Can have students think of other examples of uses of curved mirrors (in convenience stores that allow the clerk to see customers, car side mirrors, fun houses, telescopes, Direct TV satellite dishes (not visible light mirror, but radio frequency “mirrors”).

Explorations

Exploration 36.1 - Camera
Topic(s): lenses

Exploration 36.2 - Telescope
Topic(s): lenses

Problems

P.36.1 (Level 2)
Topic(s): lenses
Answer: a) near-sighted (can not focus a far source at the back of the retina)
b) -4.5
P.36.2 (Level 2)

Topic(s): lenses

Answer: a) far-sighted, c) +2; no can’t focus on a far-away point so use bifocals to look over the glasses to see far-away.

P.36.3 (Level 2)

Topic(s): lenses

Answer: a) normal

P.36.4 (Level 2)

Topic(s): lenses

Answer: x=2 (2.1 units in front of front of eye)

P.36.5 (Level 2)

Topic(s): lenses

Answer: x=1 (1/2 cm from the objective).
Chapter II.37: Interference

Illustrations

Illustration 37.1: Ripple Tank

Topic(s): interference
Purpose: To demonstrate interference using a ripple tank.
Suggested Use: Have students explore the constructive and destructive interference as they move the sources around and change the wavelength. Since many books focus on contrasting constructive and destructive interference, should also discuss interference that is neither completely destructive nor completely constructive interference.

Illustration 37.2: Dielectric Mirrors

Topic(s): interference, thin film
Purpose: To show how layering materials of different indices of refraction can create a mirror.
Suggested Use: Show a camera lens (or laser mirror) with a dielectric coating. Problem 37.11 asks students to explain the physics behind this illustration.

Explorations

Exploration 37.1 – Varying Numbers and Orientations of Sources

Topic(s): interference

Exploration 37.2 – Changing the Separation Between Sources

Topic(s): interference, double-slit

Problems

P.37.1 (Level 1)

Topic(s): interference
Answer: a) Bright central spot—fading to dark ring at a radius of about 7. b) Screen does not change over time.

P.37.2 (Level 1)

Topic(s): interference
Answer: A: completely destructive; C&D: completely constructive; B somewhere in between

P.37.3 (Level 1)

Topic(s): interference
Answer: In phase.
P.37.4 (Level 1)

Topic(s): interference
Answer: ½ wavelength.

P.37.5 (Level 1)

Topic(s): interference
Answer: a) regions of constructive and destructive interference would be switched., b) no difference

P.37.6 (Level 2)

Topic(s): interference
Answer: a) out of phase, b) 1.25, c) A stay the same; C same; B completely destructive (see below)

P.37.7 (Level 2)

Topic(s): interference, double-slit
Answer: 2-nm.

Wavelength=0.8-0.9 nm.

P.37.8 (Level 2)

Topic(s): interference, thin films
Answer: a) 2<3<4<1 (smaller wavelength means bigger index of refraction), b) Interference of reflected wave. Medium 2 is 2- wavelengths thick and Medium 3 is 3-wavelengths of light thick, thus light that reflects from the 2-3 interface interferes destructively (phase shift with reflection) with incident light and same occurs for the 3-4 interface. Thus, the overall reflection amplitude is less with a multi-layer situation.

P.37.9 (Level 2)

Topic(s): interference, thin films
Answer: a) As the thickness of the film is the same as an integer divided by 2 of the wavelength of light in the medium, the reflected wave goes to zero (destructive interference between the incoming light and the reflected light from the back of the medium-air interface)., b) 2. Wavelength in the material is 8 and $\lambda_{\text{material}} = \frac{\lambda_{\text{air}}}{n}$.

- 230 -
P.37.10 (Level 3)

Topic(s): interference, thin films

Answer:

a) Destructive interference will occur for the reflected light when \(m\lambda = 2 \times \text{thickness of medium} \). As the wavelength is varied the reflected light will cycle through destructive and constructive interference, leading to peaks in the transmission.

b) \(3 \)

\[
2t = m\lambda / n = m \frac{\lambda}{n}
\]

\[
2(5) = \frac{m_1 (10)}{n} = \frac{m_2 (7.5)}{n} \quad \text{where} \quad m_3 = m + 1
\]

\[
10m_1 = 7.5m_2 = 7.5(m_1 + 1)
\]

\[m_1 = 3, \quad m_2 = 4 \implies n = 3\]

c) See Below

P.37.11 (Level 2)

Topic(s): interference, thin films

Answer: Constructive interference. For example, with one film: constructive interference of the wave reflected at the interface between the two films with the reflected wave from the front surface. Continue this process with multiple layers.
Chapter II.38: Diffraction

Illustrations

Illustration 38.1: Single Slit Diffraction
Topic(s): diffraction, single slit
Purpose: To demonstrate the effect of slit width and wavelength on diffraction patterns.
Suggested Use: Have students explore the differences between the diffraction patterns produced by different sources (slit widths and wavelengths). Building a model of single slit diffraction in this animation involves arranging point sources together to the size of a slit (students are asked to do this in Exploration 38.1) which can lead into a discussion of Huygen’s principle (see Illustration 34.3).

Illustration 38.2: Application of Diffraction Gratings.
Topic(s): diffraction, grating
Purpose: To show how diffraction gratings are used to identify the wavelength of light and look at spectra.
Suggested Use: Discuss applications of gratings. Bring in diffraction gratings for students to look at filament bulbs and sodium, neon, etc lights. Demonstrate how CDs can be used as diffraction gratings. As a quick hands-on exercise, students can use laser pointers and make appropriate measurements to determine the spacing between grooves on a CD.

Explorations

Exploration 38.1 – Modeling Diffraction from a Slit
Topic(s): diffraction, single slit

Exploration 38.2 – Diffraction Grating
Topic(s): diffraction, grating

Problems

P.38.1 (Level 1)
Topic(s): diffraction, single slit
Answer: A<B<C
Wavelength same for all.

P.38.2 (Level 1)
Topic(s): diffraction, single slit
Answer: A<C<B
(since spreading of the beam is essentially the same, smallest wavelength must be entering smallest slit)
P.38.3 (Level 2)
Topic(s): diffraction, single slit
Answer: 2.0-2.4\,\mu\text{m}.
Wavelength=0.9\,\mu\text{m}.

P.38.4 (Level 2)
Topic(s): diffraction, single slit
Answer: 600-640\text{nm}

P.38.5 (Level 2)
Topic(s): diffraction, grating
Answer: 510-540\text{nm}

P.38.6 (Level 2)
Topic(s): diffraction, grating
Answer: 150\text{ lines/mm}
Chapter II.39: Polarization

Illustrations

Illustration 39.1: Polarization

Topic(s): polarization

Purpose: To connect the x and y components of a wave to the polarization of a wave.

Suggested Use: Start with a phase difference of 0 and then change the values of the amplitudes of the electric field in the x and y direction and have students predict the corresponding view of the traveling wave. Then students can try changing the phase difference to see what that does. This is a good opportunity to discuss linear, circular and elliptical polarization or have students work through Exploration 39.1 which is a tutorial on this animation and the different types of polarization.

Illustration 39.2: Polarized Electromagnetic Waves

Topic(s): polarization, polarizer

Purpose: To demonstrate different polarizations and the effect of polarizers.

Suggested Use: Students can compare linearly polarized light with circularly polarized light as well what happens with a polarizing filter. Students should compare this representation of the waves with the representation in Illustration 39.1 (or Exploration 39.1).

Explorations

Exploration 39.1 – Polarization Tutorial

Topic(s): polarization

Exploration 39.2 - Polarizers

Topic(s): polarization, polarizer

Problems

P.39.1 (Level 2)

Topic(s): polarization

Answer:

a) left circularly polarized (Ex=8; Ey=8; PD=1.5*π=-0.5*π)

b) right elliptically polarized (Ex=4, Ey=8; PD=0.5*π)

c) linearly polarized (Ex=4, Ey=8, PD=0) along Exis at an angle of 63° above x-Exis (angle=arctan(8/4)).

d) right circularly polarized (Ex=8, Ey=8, PD=0.5*π)

P.39.2 (Level 2)

Topic(s): polarization
Answer:
\[E_x = E_x \sin(t + PD) \quad E_y = E_y \sin t \]

a) \(E_x = 3, \quad E_y = 8, \quad PD = \pi \)
b) \(E_x = 3, \quad E_y = 8, \quad PD = 0 \)
c) \(E_x = 5, \quad E_y = 8, \quad PD = 0.25\pi \)
d) \(E_x = 5, \quad E_y = 8, \quad PD = 1.25\pi \)
e) \(E_x = 8, \quad E_y = 5, \quad PD = 0.28\pi \)

P.39.3 (Level 1)
Topic(s): polarization
Answer: B

P.39.4 (Level 1)
Topic(s): polarization
Answer: D

P.39.5 (Level 1)
Topic(s): polarization
Answer:

a) \(+z\)
b) linearly polarized in x direction

P.39.6 (Level 1)
Topic(s): polarization
Answer:

a) \(+z\)
b) right-circularly polarized

P.39.7 (Level 1)
Topic(s): polarization
Answer:

a) \(+z\)
b) linearly polarized in plane 45° above x-Exis

P.39.8 (Level 1)
Topic(s): polarization
Answer:

a) \(+z\)
b) left-circularly polarized

P.39.9 (Level 1)
Topic(s): polarization
Answer: Animation 4
P.39.10 (Level 3)

Topic(s): polarization

Answer:

a) $|\text{Amplitude}_{\text{exit}}| = |\text{Amplitude}_{\text{in}}| \cos \alpha$ where α is the polarization angle.

b) $\text{energy}_{\text{exit}} = \text{energy}_{\text{in}} \cos^2 \alpha$ and energy--intensity of beam--E^2.
Chapter II.40: Optics Appendix

Problems

P.Appx.1 (Level 2)
Topic(s): lenses, mirrors, focal point
Answer:
 a) convex mirror
 b) -1

P.Appx.2 (Level 2)
Topic(s): lenses, mirrors, focal point
Answer:
 a) converging lens
 b) 0.7

P.Appx.3 (Level 2)
Topic(s): lenses, mirrors, focal point
Answer:
 a) diverging lens
 b) -1.3

P.Appx.4 (Level 2)
Topic(s): lenses, mirrors, focal point
Answer:
 a) concave mirror
 b) 0.7

P.Appx.5 (Level 2)
Topic(s): lenses, mirrors, focal point
Answer:
 a) plane mirror
 b) infinity

P.Appx.6 (Level 1)
Topic(s): lenses, mirrors, focal point
Answer:
 a) concave mirror
 b) 0.7

P.Appx.7 (Level 1)
Topic(s): lenses, mirrors, focal point
Answer:
a) plane mirror
b) infinite

P.Appx.8 (Level 2)
Topic(s): lenses, mirrors, focal point
Answer:
a) convex mirror
b) \(\approx -1.3 \text{ to } -1.7\)

P.Appx.9 (Level 2)
Topic(s): lenses, mirrors, focal point
Answer:
a) diverging lens
b) \(\approx -0.5 \text{ to } -0.7\)

P.Appx.10 (Level 2)
Topic(s): lenses, mirrors, focal point
Answer:
a) converging lens
b) 1.4

P.Appx.11 (Level 2)
Topic(s): lenses, mirrors, focal point
Answer:
a) plane mirror
b) infinite

P.Appx.12 (Level 2)
Topic(s): lenses, mirrors, focal point
Answer:
a) diverging lens
b) \(\approx -0.9 \text{ to } -1.1\)

P.Appx.13 (Level 1)
Topic(s): lenses, mirrors, focal point
Answer:
a) concave mirror
b) 0.7

P.Appx.14 (Level 2)
Topic(s): lenses, mirrors, focal point
Answer:
a) converging lens
b) 0.3
P.Appx.15 (Level 2)

Topic(s): lenses, mirrors, focal point

Answer:

a) convex mirror

b) \(\approx -0.7\) to \(-0.9\)