Wiki – What, Why, How?

The wiki in an academic environment
Special considerations, uses and pitfalls

Stephen P. Weppner
Associate Professor of Physics
Eckerd College
weppnesp@eckerd.edu

Hosted with Gregory Kohs of Mywikibiz.com

July 15th, 2007
Orlando, Florida
Outline

I. My Background

II. What is a wiki? How does it differ from Blackboard and WebCT

III. What is it good for in an academic environment?

IV. Examples
My Background:

- A PhD in computational nuclear physics from Ohio University
- Associate Professor of Physics, Eckerd College, St. Petersburg, Fl
- Research in nuclear physics and physics education
- Eckerd College is an small liberal undergraduate institution of 1800 students
- I teach ~6 courses a year (introductory physics, advanced physics, general education)
- Class size is relatively small (10 to 30 students)
- I maintain and installed the Eckerd College Wiki in August of 2006
- I have personally used the wiki in 3 courses, 1 committee, and 1 faculty resource
How does a wiki differ from a course management system?

WebCT, Blackboard, Desire2Learn, Angel Learning, Moodle*, Sakai Project*, etc...

- Advanced Assessment Tools
 Quizzes / Tests
 Assignments / Projects
- Advanced Administrative tools
 Batch enrollment
 Varying levels of administrative roles
 (sys-op, instructor, student)
 Reporting facilities
 Importing tools
- Advanced Instructor Tools
 Posting of syllabus, other docs.
 Grading
 Test and assessment banks
- Advanced Communication Tools
 Email
 Blog
 Discussion Page
 Live Whiteboards
 Live chatting
 Wiki

* Open Source System

A Wiki Software Package does much less....

MediaWiki*, PhpWiki*, PMWiki*, TWiki*, DokuWiki* etc...

- Advanced Assessment Tools
 Quizzes / Tests
 Assignments / Projects
- Advanced Administrative tools
 (more difficult)
 Varying levels of administrative roles
 (sys-op, instructor, student)
 Reporting facilities
 (less functionality)

- Advanced Instructor Tools
 Posting of syllabus, other docs.
 Grading
 Test and assessment banks
- Advanced Communication Tools
 (less functionality)
 (less functionality)
 (less functionality)
 Live White board
 Live chatting
 Wiki

* Open Source System
Characteristics of a Wiki*

Several characteristics of wikis facilitate their multiple author capability which are useful in an academic setting. The most frequently used of these are:

Ease of editing: Many wikis now provide a simple “What You See is What You Get” editor, which allows contributors who infrequently make edits or lack sufficient technical knowledge to edit wiki pages responsibly.

Review and revert: Wikis usually provide a system in which authors can review changes to pages and revert to older versions if this is appropriate.

Permissions: Most wikis allow administrators to assign different levels of permissions to visitors to view, edit, create or delete pages. Assigning permissions helps prevent misuse of wikis.

Discussion pages: Most wikis facilitate discussion by having a separate page attached to each wiki page for discussion.

Features of a Wiki that are appropriate in an academic context

Multiple Author Collaboration – This is what separates a wiki from a blog or a discussion. Faculty working together on grant proposals, committee documents. Students collaborating on data collecting projects and summaries.

“What You See is What You Get” editor -- Greg has discussed this

Authors can review changes – Facilitates faculty grading, students can 'rollback' to previous versions

Allow administrators to assign different levels of permissions – administrator, faculty, students, general public have different access control to create, edit, and view different pages

facilitate discussion – discussion in class or on the wiki itself about the collaborative effort.
Comparing Versions List -- Grading

PO251S-001: Rolling Out Iran

Revision history

(Latest | Earliest) View (previous 50) (next 50) (20 | 50 | 100 | 250 | 500).

Diff selection: mark the radio boxes of the versions to compare and hit enter or the button at the bottom.

Legend: (cur) = difference with current version, (last) = difference with preceding version, M = minor edit.

(cur)	11:10, 8 May 2007 Burkebl
(last)	
(cur)	23:27, 7 May 2007 Wegnerse
(last)	
(cur)	23:24, 7 May 2007 Wegnerse
(last)	
(cur)	23:24, 7 May 2007 Wegnerse
(last)	
(cur)	13:53, 7 May 2007 Mckelvab (Corrections and Summary)
(last)	
(cur)	13:41, 7 May 2007 Mckelvab (Corrections and Summary)
(last)	
(cur)	13:16, 7 May 2007 Mckelvab (Corrections and Summary)
(last)	
(cur)	13:24, 3 May 2007 Eiroagea (Foreign Perspectives: The British Media on Iran)
(last)	
(cur)	11:01, 26 April 2007 Merrithc (UK Media (edit))
(last)	
(cur)	00:37, 24 April 2007 Duquetmi (New York Times Coverage of Iran)
(last)	
(cur)	00:33, 24 April 2007 Duquetmi (New York Times Coverage of Iran)
(last)	
(cur)	23:56, 23 April 2007 Duquetmi (New York Times Coverage of Iran)
(last)	
(cur)	23:34, 23 April 2007 Duquetmi (New York Times Coverage of Iran)
(last)	
(last)	
(cur)	23:25, 23 April 2007 Duquetmi (New York Times Coverage of Iran)
(last)	
(cur)	23:22, 23 April 2007 Duquetmi (New York Times Coverage of Iran)
(last)	
(cur)	23:20, 23 April 2007 Duquetmi (New York Times Coverage of Iran)
(last)	
(cur)	23:19, 23 April 2007 Duquetmi (New York Times Coverage of Iran)
(last)	
Comparing two revisions -- Grading

Revision as of 00:37, 24 April 2007
Duquettmi (Talk | contribs)
(→New York Times Coverage of Iran)
← Previous diff

Revision as of 11:01, 26 April 2007
Merrithc (Talk | contribs)
(UK Media (edit))
Next diff →

Line 226:

== Foreign Perspectives: The British Media on Iran ==

The major media in the United Kingdom have taken quite a different focus during this **time period** than their American counterparts. Like in the U.S. media, a large upsurge in stories focusing on Iran appeared in February. Articles with titles such as "US Ex-Generals Reject Iran Strike"[http://news.bbc.co.uk/2/hi/middle_east/6328801.stm], "Target Iran: US Able to Strike in the Spring"[http://www.guardian.co.uk/international/story/0,2010001,00.html], and "US 'Attack Plans Revealed"[http://news.bbc.co.uk/2/hi/middle_east/6376639.stm] appeared; in fact the revelations of a "plan of attack" or timeline for a strike against Iran by the U.S. seemed to be the dominant story throughout February. The other dynamic of military dissent against possible strikes against Iran's nuclear facilities, such as "US Generals 'Will Quit' If Bush Orders Iran Attack"[http://www.timesonline.co.uk/tol/news/world/iraq/article1434540.ece], emerged several times.

The tone in the British media shifted significantly with the internment of 15 Royal Navy sailors by Iran in March. The media was flooded with a variety
... no students or public allowed, faculty resources

Eckerd Academic Wiki: Community Portal

Committees

Computer Policy Group (Restricted)
Science Curriculum Review (Restricted)

Additional Eckerd Information

Information about Eckerd Alumni (Restricted)
Faculty Resources that are on the wiki

Committees

Computer Policy Group (Restricted)
Science Curriculum Review (Restricted)

Additional Eckerd Information

Information about Eckerd Alumni (Restricted)

Fall, 2006 Resources for Faculty

- QFM resources
- WHGC 181 Resources

it is also being used to facilitate writing a Howard Hughes Medical Institute grant proposal
Faculty uses

NAS Brochure

The draft version of the brochure
Here is the text of the brochure

Sheen B being built
Eckerd 64(?)
Eckerd 62(?)
No Chapel (?)

Bay Bourough
Easter Egg -- Ferguson
Sheen G
Science Complex 1964
One place for all resources, including galleries

NAS Brochure

The draft version of the brochure

Here is the text of the brochure

External PDF file

Internal wiki link, editable!

Sheen B being built

Eckerd 64 (?)

Eckerd 62 (?)

No Chapel (?)

Bay Borough

Easter Egg -- Ferguson

Sheen C

Science Complex 1964
A sample wiki homepage that I used in Spring 2007

PH242N-002:Main

Welcome to PH242 Wiki Page Dr. Weppner, Eckerd College

Introduction

During the semester you will have the opportunity to work on a class-created summary sheets which will be available during all tests. Every student is welcomed and encouraged to contribute to this class project. The motivation is two-fold:

- [1] Extra credit can be earned as detailed in the syllabus
- [2] The better the final product the more useful an aid it will be during the exams

Feel free to post almost any format including:

- [1] formulas
- [2] definitions
- [3] discussion
- [4] images and figures
- [5] problem solutions
- [6] hints

... and be creative!

Please be wary of copyrighted material. Definitions of physics terms and formulas are not copyrighted but using analogies, language, or problems as found in your textbook must be used sparingly and correctly referenced (see the Help page). All figures should follow the same guidelines. Preferred figures are either your own or non-copyrighted material. For an example of how to use references you can check out the Wikipedia article on Isaac Newton® as an example.

Since this is a summary sheet you will also want the final product to be concise and organized.
PH242N-002: Final

Welcome to PH242 Wiki Page Dr. Weppner, Eckerd College

Homepage for Syllabus, Grades, Handouts Help Editing Using Math

Info

The final will be handed out on Friday, May 4th

Contents [show]

1. Adding E fields or B fields

Electric Field

- Electric fields extend outwards from every charge and permeates all of space
- Vector whose direction is the direction of the force on a positive test charge at that point
- Electric field, \(E \), is the force exerted on a positive test charge at that point divided by the magnitude of the test charge
 \[
 E = \frac{F}{q}
 \]
- Units: N/C
- Test charge: a positive charge so small that the force it exerts does not significantly alter the distribution of the charges that create the field being measured
- Single Point Charge
 \[
 E = \left(\frac{1}{4\pi \varepsilon_0} \right) \left(\frac{Q}{r^2} \right)
 \]
- \(F = qE \)
- The electric field due to a positive charge points away from the charge, whereas the electric field due to a negative charge points towards that charge
A wiki can upload scientific figures

Your personal molecule - Finished

Graph the Maxwell-Boltzmann distribution for your molecule at 298 K and at 898 K. Use wide enough limits to get a smooth graph similar to that drawn on p. 393 of your textbook. Use the SigmaPlot software to make the graph. (Spreadsheet software is not good enough.)

(a) Calculate the root-mean-square speed for your molecule at 298 K and at 898 K. Do the results seem reasonable? Explain.
(b) Calculate and then compare the average speeds of your molecule at 298 K and 898 K. Do the results seem reasonable? Explain.
(c) Use your Maxwell-Boltzmann distribution to determine the probability of finding your molecule with a speed between \(\sqrt{v_{\text{rms}}^2} \) and \(2\sqrt{v_{\text{rms}}^2} \). This will require an integration. Use either the cut-and-weigh or counting-squares technique. If you use a numerical method, show all details. In any case, briefly explain the method used.
(d) Post your graph and results here, with appropriate explanations of your work. For identification purposes, include your initials in the file name for your graph. [Example: If your name is John Quincy Adams, then Graph_JQA.jpg would be a good file name.]

Answers and comments

The graphs submitted were all reasonable, showing the expected shapes and trends. The calculations were verified with the SigmaPlot software, and the results are shown at the right.
...and can even do formulas

Angular Motion Equations

- Angular Velocity (ω)
 \[\omega = \frac{\Delta \theta}{\Delta t} \]

- Angular Acceleration (α)
 - Average
 \[\alpha = \frac{\Delta \omega}{\Delta t} \]
 - Instantaneous
 \[\alpha_{\text{inst}} = \frac{d\omega}{dt} \]

- Radius of Rotation (r)

<table>
<thead>
<tr>
<th>Linear Motion Formula</th>
<th>Angular Motion Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta x = V_it + \frac{1}{2}at^2$</td>
<td>$\Delta \theta = \omega t + \frac{1}{2}\alpha t^2$</td>
</tr>
<tr>
<td>$V_f = V_i + at$</td>
<td>$\omega = \omega_i + \alpha t$</td>
</tr>
<tr>
<td>$V_f^2 = V_i^2 + 2a\Delta x$</td>
<td>$\omega_f^2 = \omega_i^2 + 2\alpha \Delta \theta$</td>
</tr>
<tr>
<td>$V_{avg} = \frac{V_f + V_i}{2}$</td>
<td>$\bar{\omega} = \frac{\omega_f + \omega_i}{2}$</td>
</tr>
</tbody>
</table>

Centripetal acceleration

- $a_R = \frac{v^2}{R} = \frac{(\omega R)^2}{R} = \omega^2 R$

Torque

- most effective moment arm is the largest and perpendicular to the force applied.
Fall, 2006 courses at Eckerd College which used the wiki

- **CH121N** Prof. Hudson's *General Chemistry I* -- A somewhat successful extra credit questions page with some inventive problems and cute images. Student involvement was less than hoped. High investment for faculty member.

- **CH321** Prof. Hudson's *Physical Chemistry I* -- A successful questions and projects page with high student involvement and feedback. High investment for faculty member.

- **HI324G** Prof. Johnston's *Native American History* – A project on individual indian tribes, not collaborative. Some good projects, some poor. Little faculty involvement.

- **PH241N** Prof. Weppner's *Fundamental Physics I* – A collaborative “cheat sheet” page, good results. Little faculty involvement.

- **QM410** Prof. Weppner's *Quest for Meaning* – An extra credit journal page, similar to a blog

- **WH181** Prof. Cox's *Western Heritage in a Global Context* – A collaborative summary of texts, not as collaborative as professor would have hoped but an interesting experiment.
Spring, 2007 courses at Eckerd College which used the wiki

- **CH122L** - Prof. Hudson's *General Chemistry II Lab* – An experiment for a laboratory class. Not too much student input but well done by the faculty member

- **PH242** - Prof. Weppner's *Fundamental Physics II* – Another good attempt at the “cheat sheet”, collaborative.

- **PH341** - Prof. Cox's *Classical Mechanics* – Another attempt at the “cheat sheet”, not as successful, students were not motivated.

- **PO251** - Prof. Oglesby's *Media & Foreign Policy* – A collaborative work on how journalism is portrayed, the professor explicitly wanted the students to collaborate on media pieces for contemporary events

- **WH182** - Prof. Gowans' *West Heritage-Global Context 2* – Another summary of the texts, not collaborative really, but some good efforts by individual students.

- **WH182** - Prof. Meese's *West Heritage-Global Context 2* – A course page where the faculty member put additional resources for students. Occasional student feedback.
The students found it very helpful and fascinating. I especially liked the accountability factor regarding the teams' research of various [Native American] tribes. It was quite obvious who had been serious about the assignment. The site also allowed more free exchange of knowledge about many different tribes. Maybe it would be possible to have more instructions for them to just hand out to them and discuss first before beginning. I didn't find it particularly obtuse but some of the student floundered. In fact, their colleagues helped them through it in many cases. This was also good for the team building.
Another positive review

About one-third of the students, who also turned out to be those who did not participate as frequently in class discussions, used the wiki to strengthen their contributions. I could bring those ideas into class very effectively as discussion starters by projecting their actual words on the class screen, acknowledging their ideas, and then ask others to respond. This improved students' perceptions of each other as active thinkers, too, and improved class rapport. The ease of use and the ability to import great visuals alongside text made the wiki popular with the students--at mid-semester, when asked about things to change, they voted almost unanimously to keep using the wiki as a regular component of the course.
Another Review

I think the Wiki worked well enough. It was a great way to get reporting on the war and journalism conference because they had to do it right away. For the longer term reporting on a theme, it worked less well which was my fault. I did not require staged posting. I reminded them and gave them time in class for the groups to meet but I did not assign midpoints in the schedule before the entire project was due. The students advise me to repeat the project but to build in required stages. I liked being able to assess the individual work. I could tell from the history who did what and how long they worked. There pleas of technical incompetence were not valid -- we solved all the bugs along the way.
Some things that did not work

My use in upper level physics was not particularly successful-- Students were supposed to contribute equations to the wiki (and any on the wiki became part of the equation sheet)-- students had difficulty with latex (again, they did this at the last minute) and ended up scanning in equation sheets and pages of homework assignments. There was no editing of other students' work. I probably would not use it this way in an upper level physics course again.

In my writing class, we discovered that 18 people trying to edit the same page kept a number of them from seeing the editing icons, etc. They could log in, but not edit. I did not try that type of exercise again,
Wikis as pedagogical tools are best when:

Projects with some level of collaboration (data collection included!)

The assignment has few constraints

Faculty and peers want to follow the development process in real time

Motivation for success is well defined

The project is good for public exposure (same as developing a website)

A helpful website on wikis in education: http://www.scienceofspectroscopy.info
Thanks to AACP, Eckerd College, Greg Kohs, Chandra Gilmore, and Rebecca Morgan